

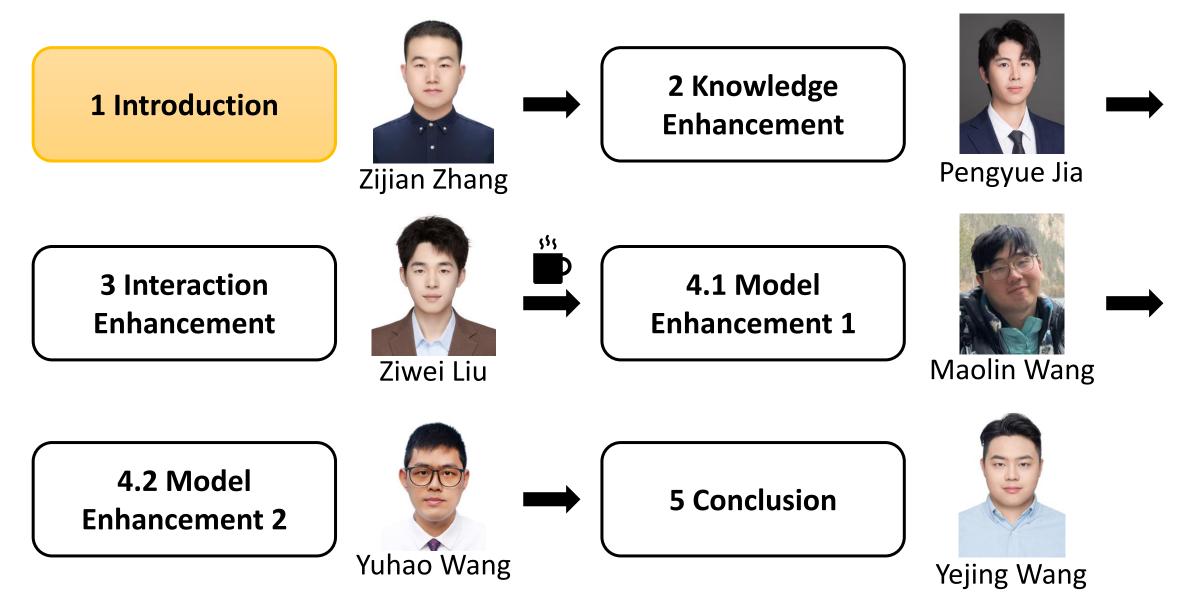
Large Language Model Enhanced Recommender Systems

Qidong Liu^{1,2}, Xiangyu Zhao², Yuhao Wang², Yejing Wang², Zijian Zhang², Yuqi Sun¹, Xiang Li, Maolin Wang², Pengyue Jia², Chong Chen, Wei Huang, Feng Tian¹

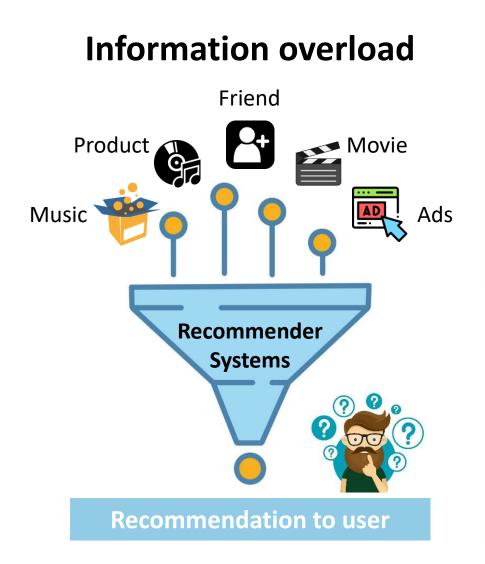
¹Xi'an Jiaotong University ²City University of Hong Kong

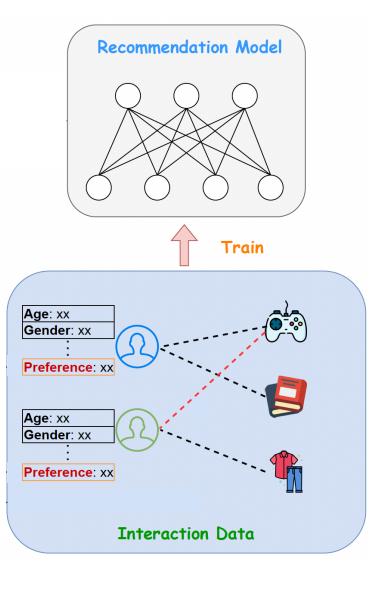
Aug 3, 2025

Agenda



Background of Recommender Systems

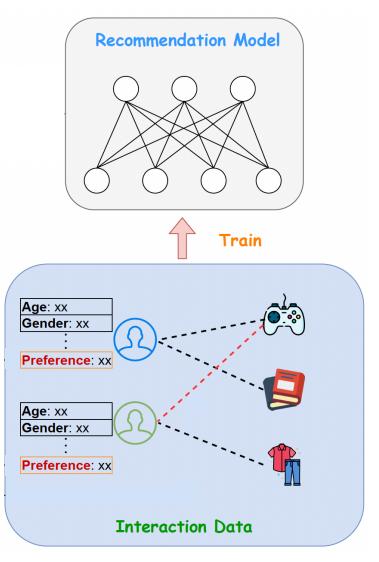




Background of Recommender Systems

Limitations of RS

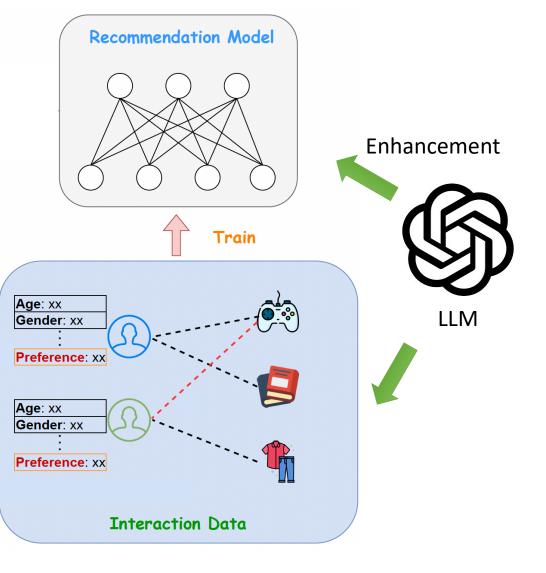
- Feature level: Lack of reasoning and knowledge in feature representations
- Interaction level: Data sparsity in user-item interactions
- Model level: Overlooking semantic understanding



Background of Recommender Systems

Advantages of LLM

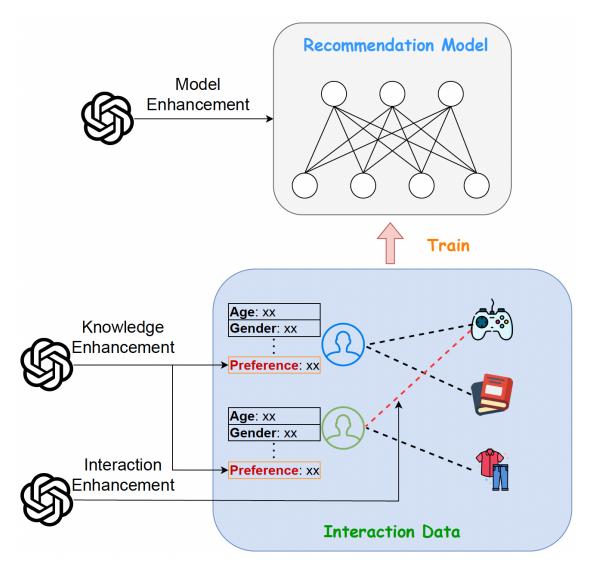
- Feature level: Reasoning abilities and world knowledge to derive textual descriptions
- Interaction level: Approximate users and derive new user-item interactions
- Model level: Analyze interactions from a semantic view



LLM-enhanced RS

LLM-enhanced RS (LLMERS)

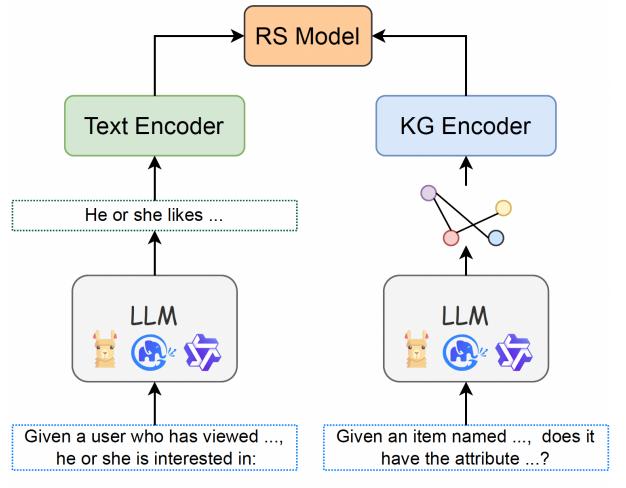
- Knowledge enhancement
- Interaction enhancement
- Model enhancement



Knowledge enhancement

Knowledge enhancement

- Summary Text: Utilizes LLM to summarize characteristics of items or reason for user preferences.
- Knowledge Graph: Applies LLM to generate or augment structured Knowledge Graphs

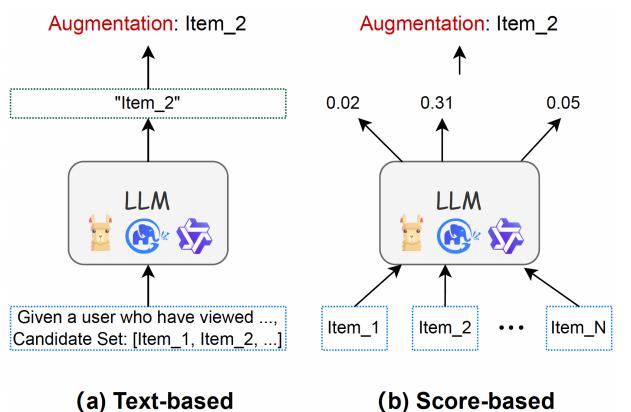


(a) Summary Text

(b) Knowledge Graph

Interaction enhancement

- Text-based: LLM outputs names of pseudo-interacted items as augmentation
- Score-based: LLM derives probabilities of possible interactions for augmentation

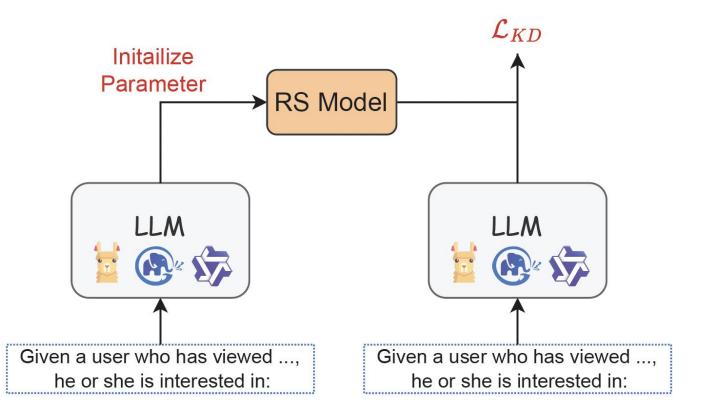


Model enhancement

August 3-7, 2025 KDD2+25

Model enhancement

- Model Initialization: Pretrain or initialize RS model weights with LLM's semantics before training
- Model Distillation: Transfer powerful abilities of LLM to smaller RS models



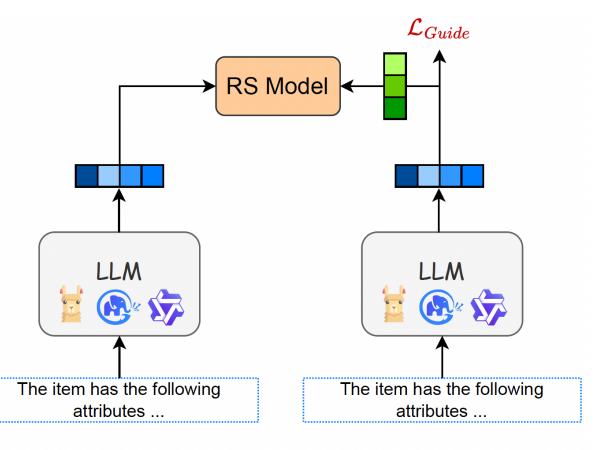
(a) Model Initialization

(b) Model Distillation

Model enhancement

Model enhancement

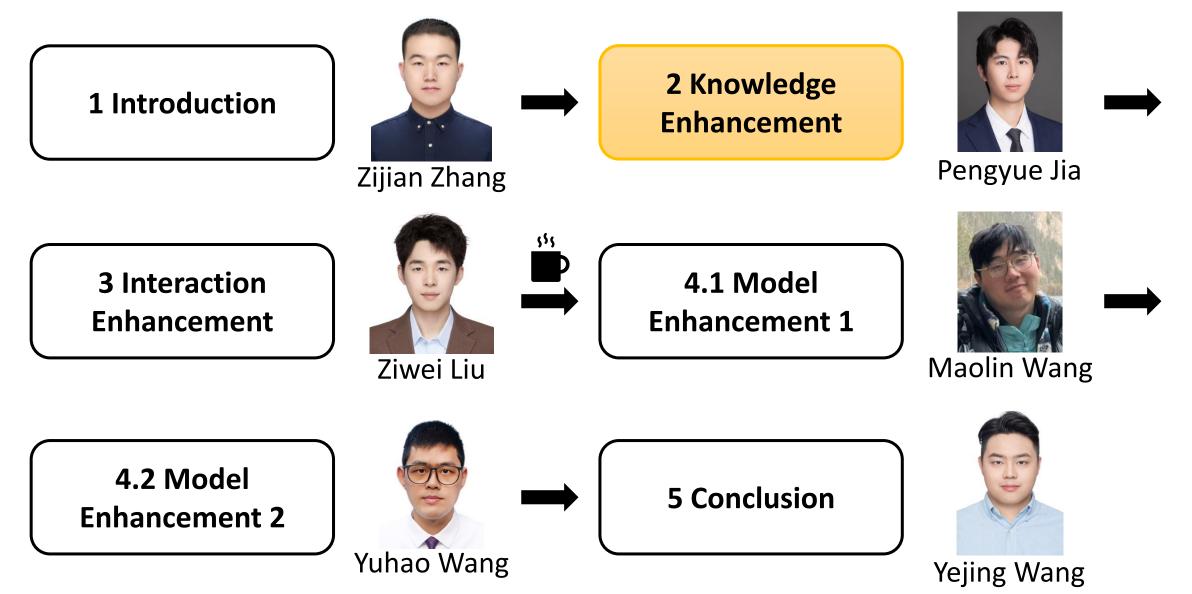
- Embedding Utilization: Directly use LLMderived embeddings as a semantic supplement for RS
- Embedding Guidance: Use LLM embeddings as guidance for training or parameter synthesis of RS models



(c) Embedding Utilization

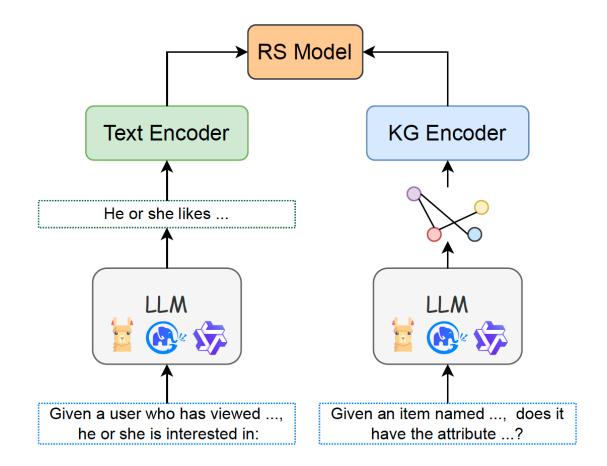
(d) Embedding Guidance

Agenda



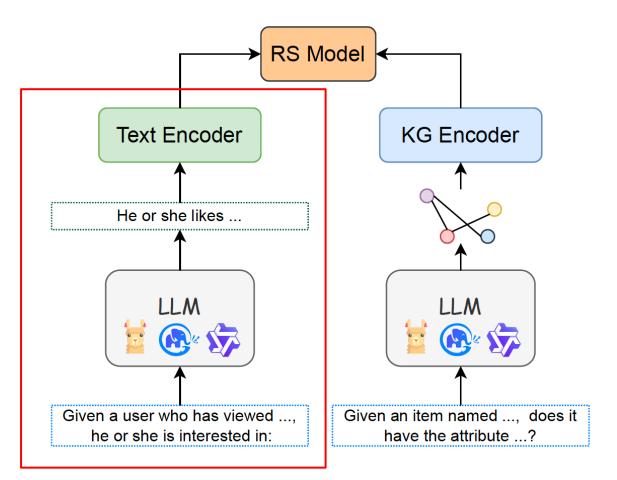
Knowledge Enhancement

- LLM owns extensive world knowledge and powerful reasoning abilities, which can supplement the RS with external knowledge.
- Categories
 - Summary Text
 - Knowledge Graph
 - Combination



• This subcategory refers to utilizing LLM to summarize the characteristics of items or to reason for the preference of users.

- For example, the prompt for summarization can be "Given a user who has viewed <Browsing History>, please explain what he or she is interested in: ".
- Categories
 - User Only
 - Item Only
 - User & Item



August 3-7, 2025

• Background

- The explainability of recommendation systems is crucial for enhancing user trust and satisfaction.
- Motivation
 - Fine-tuning LLM models for recommendation tasks incurs high computational costs and alignment issues with existing systems, limiting the application potential of proven proprietary/closed-source LLM models, such as GPT-4.
- Key Components
 - Semantic embedding
 - User multi-preference extraction using zero-shot prompting
 - Semantic alignment

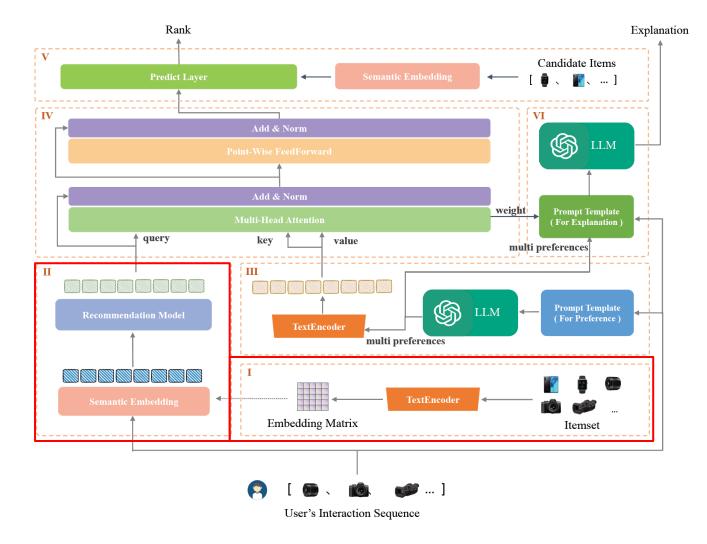
Zhao, Hongke, et al. "Lane: Logic alignment of non-tuning large language models and online recommendation systems for explainable reason generation." arXiv preprint arXiv:2407.02833 (2024).

User Only - LANE

- Semantic Embedding
 - Unlike traditional recommender systems that use item IDs, LANE encodes user history as semantic vectors using a text encoder

$$\mathbf{M} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \vdots \\ \mathbf{m}_n \end{bmatrix} = \text{TextEncoder} \left(\begin{bmatrix} i_1 \\ i_2 \\ \vdots \\ i_n \end{bmatrix} \right)$$

- Integrated Model Module
 - LANE incorporates a standard sequential RS, but adapts its embedding layer to use the semantic vectors generated previously.



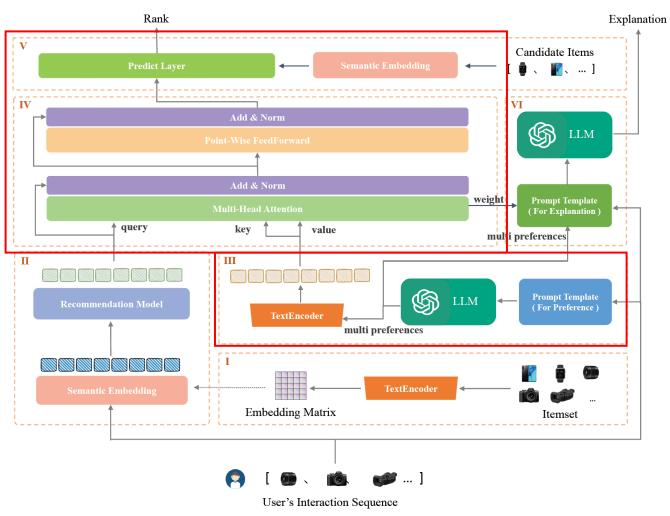
- Extracting Multi-Preferences using LLM Zero-Shot Prompting
 - $\begin{aligned} & \operatorname{Preference}^u = \operatorname{LLM}(\operatorname{prompt}_p(S^u)), \\ & \mathbf{P}^u = \operatorname{TextEncoder}(\operatorname{Preference}^u) \end{aligned}$
- Semantic Alignment via Multi-Head Attention

$$\operatorname{att}^{u} = \operatorname{LayerNorm}\left(\operatorname{Multihead}(\mathbf{Q}^{u}, \mathbf{P}^{u}, \mathbf{P}^{u})\right) + \mathbf{Q}^{u},$$

$$\mathbf{F}^{u} = \begin{bmatrix} \mathbf{f}_{1}^{u} \\ \mathbf{f}_{2}^{u} \\ \vdots \\ \mathbf{f}_{n}^{u} \end{bmatrix} = \text{LayerNorm}\left(\text{FNN}(\text{att}^{u})\right) + \text{att}^{u}$$

• Prediction

$$\mathbf{r}_{t,i}^u = \mathbf{f}_t^u \cdot \mathbf{m}_i,$$



August 3-7, 2025

• LANE consistently achieves significant improvements in both NDCG@10 and HR@10 across all datasets and baseline models.

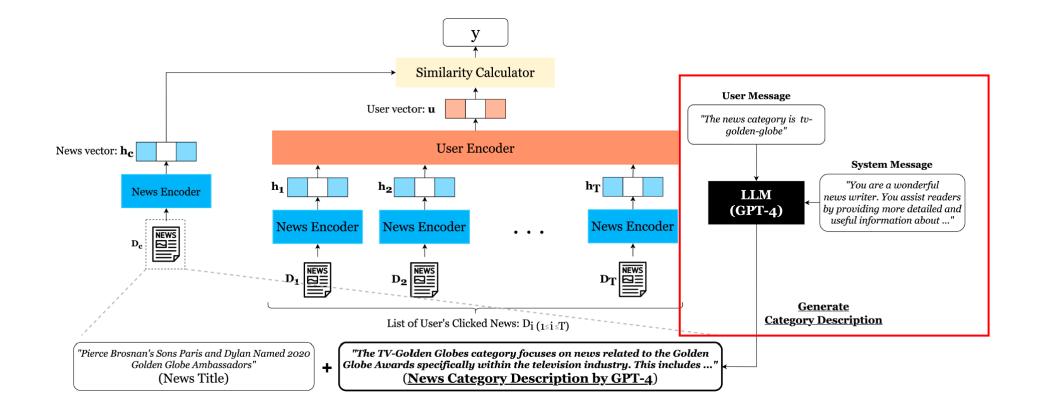
Dataset	Beau	ty	Stea	m	ML-1M		
Ducuser	NDCG@10	HR@10	NDCG@10	HR@10	NDCG@10	HR@10	
GRU4Rec	0.2853	0.4422	0.5025	0.7492	0.5277	0.7614	
LANE-GRU4Rec	0.3238	0.4825	0.5109	0.7598	0.5667	0.7844	
Improv.	13.49%	9.11%	1.67 %	1.41%	7.39%	3.02%	
BERT4Rec	0.224	0.3808	0.477	0.7261	0.4611	0.7151	
LANE-ERT4Rec	0.2734	0.4526	0.4982	0.7495	0.5111	0.7646	
Improv.	22.05%	18.86%	4.44%	3.22%	10.84%	6.92%	
SASRec	0.2831	0.423	0.4789	0.728	0.5701	0.7983	
LANE-SASRec	0.3511	0.5172	0.5649	0.803	0.5888	0.8106	
Improv.	24.02%	22.27 %	17.96%	10.30%	3.28%	1.54%	

• **Practical Values:** LANE works without fine-tuning LLMs, making it easy to integrate into existing systems while also providing explainable recommendations.

- Background
 - The explainability and informativeness of news metadata—especially category information—play a crucial role in personalized news recommendation.
- Motivation
 - Manually creating detailed descriptions for news categories is labor-intensive.
 - Existing category templates are too generic and provide insufficient semantic guidance.
 - Pretrained language models often fail to interpret short category names effectively without richer context.
- Contribution
 - Generating descriptions with LLMs
 - Incorporating descriptions into recommendation models

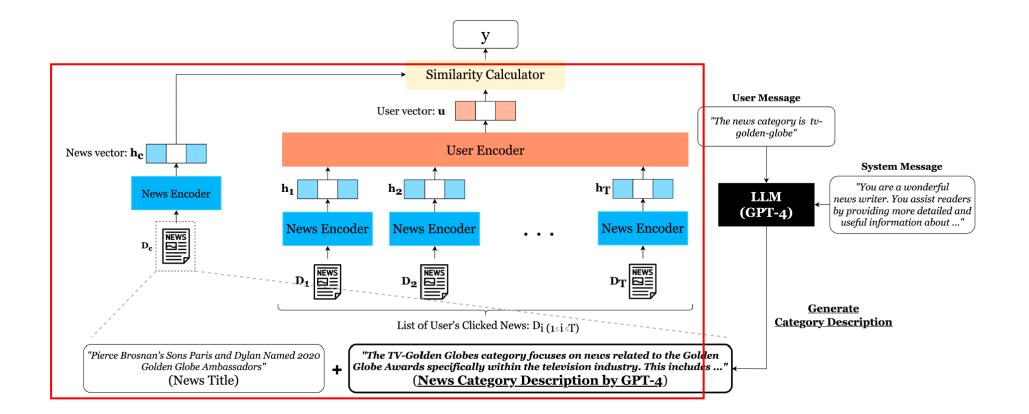
Item Only - GPTAugNews

- Category Description Generation
 - User Message + System Message -> LLM -> Generated Category Description



Item Only - GPTAugNews

- Integration into News Encoder
 - $D_{input} = D_{title} [sep] D_{desc}$, encoding with bert-style news encoder



• The proposed method consistently outperforms both the title-only and template-based baselines across all models and settings, achieving up to 5.8% AUC improvement.

Recommendation Model	PLM	Method	AUC	MRR	nDCG@5	nDCG@10
		title only	0.675	0.292	0.317	0.384
	DistilBERT	title + template-based	0.690	0.295	0.327	0.393
NAML [19]		<i>title + generate-description</i> (ours)	0.713	0.326	0.363	0.425
NAML [19]		title only	0.700	0.318	0.350	0.414
	BERT	title only title + template-based title + generate-description (ours) title only title only title only title template-based	0.696	0.308	0.340	0.405
		<i>title + generate-description</i> (ours)	0.707	0.322	0.357	0.420
		title only	0.674	0.297	0.322	0.387
	DistilBERT	title + template-based	only 0.675 0 e^{-} template-based 0.690 0 e^{-} template-based 0.690 0 e^{-} only 0.713 0 e^{-} only 0.700 0 e^{-} template-based 0.696 0 e^{-} template-based 0.674 0 e^{-} template-based 0.674 0 e^{-} template-based 0.675 0 e^{-} template-based 0.675 0 e^{-} template-based 0.667 0 e^{-} template-based 0.668 0 e^{-} template-based 0.698 0 e^{-} template-based 0.698 0 e^{-} template-based 0.698 0 e^{-} template-based 0.689 0 e^{-} template-based 0.698 0 e^{-} template-based 0.698 0 e^{-} template-based 0.694 0			0.400
NRMS [21]		<i>title + generate-description</i> (ours)	0.707	0.324	0.359	0.422
NRMS [21]		title only	0.689	0.306	0.336	0.400
	BERT	title + template-based	0.667	0.301	0.329	0.389
		<i>title + generate-description</i> (ours)	0.706	0.320	0.355	0.418
		title only	0.700	0.311	0.344	0.408
	DistilBERT	title + template-based	0.698	0.309	0.342	0.407
NDA [20]		<i>title + generate-description</i> (ours)	0.707	0.319	0.354	0.417
NPA [20]		title only	0.689	0.301	0.332	0.398
	BERT	title + template-based	0.694	0.314	0.345	0.410
		<i>title + generate-description</i> (ours)	0.710	0.324	0.360	0.422

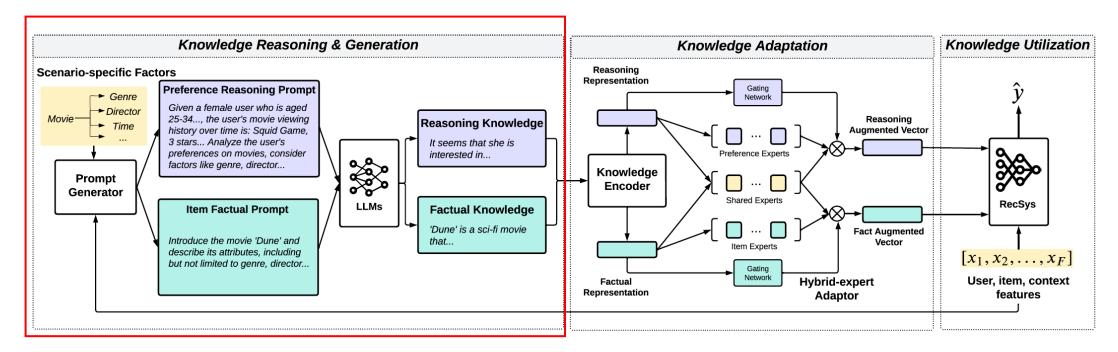
• **Practical Values:** LLM-generated category descriptions offer a simple and generalizable way to enrich news representations, enabling better recommendations without additional training or domain-specific effort.

- Background
 - Classical recommender systems are limited to closed-domain data and lack access to openworld knowledge, constraining their reasoning and generalization abilities.
- Motivation
 - Directly using LLMs as recommenders leads to poor accuracy, high latency, and difficulty handling compositional reasoning.
 - It is challenging to extract useful, aligned, and reliable knowledge from LLMs that is compatible with recommendation models.
- Contribution
 - Propose KAR, a model-agnostic framework that extracts both reasoning knowledge about users and factual knowledge about items from LLMs.
 - Design a hybrid-expert adaptor to transform textual knowledge into dense augmented vectors aligned with recommendation space.

Xi, Yunjia, et al. "Towards open-world recommendation with knowledge augmentation from large language models." Proceedings of the 18th ACM Conference on Recommender Systems. 2024.

User & Item - KAR

- Knowledge Reasoning and Generation
 - Use LLMs with **factorized prompts** to extract two types of open-world knowledge:
 - Reasoning knowledge $k_i^{(p)}$ for user i
 - Factual knowledge $k_i^{(l)}$ for item *i*



User & Item - KAR

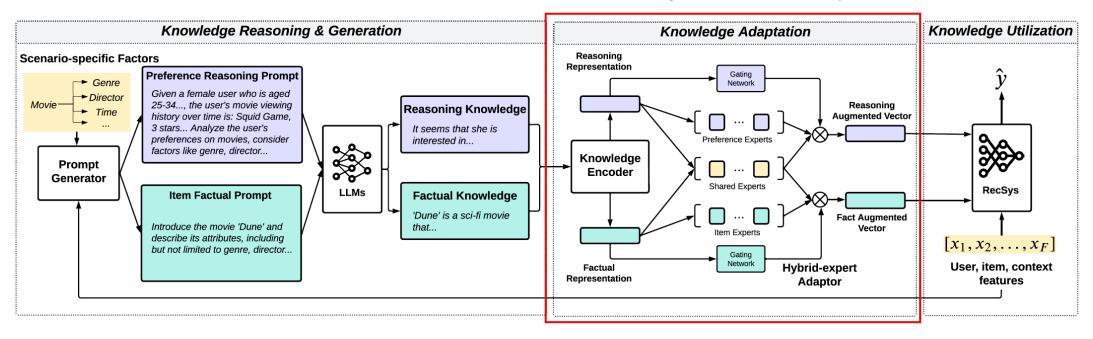
 $r_i^{(p)} = \mathrm{Aggr}(\mathrm{Encoder}(k_i^{(p)}))$

 $r_i^{(\iota)} = \mathrm{Aggr}(\mathrm{Encoder}(k_i^{(\iota)}))$

- Knowledge Adaptation and Utilization
 - Use a knowledge encoder (e.g., BERT) to encode LLM outputs
 - Apply hybrid-expert adaptor with gating networks and shared/dedicated experts to transform to $\hat{r}_i^p = \sum_{e \in S_i} \alpha_{i,e}^p \times e(r_i^p) + \sum_{e \in S_i} \alpha_{i,e}^p \times e(r_i^p),$

$$\alpha_i^p = \text{Softmax}(g^p(r_i^p)), \quad \alpha_i^\iota = \text{Softmax}(g^\iota(r_i^\iota)),$$

$$\hat{r}_{i}^{p} = \sum_{e \in \mathcal{S}_{s}} \alpha_{i,e}^{p} \times e(r_{i}^{p}) + \sum_{e \in \mathcal{S}_{p}} \alpha_{i,e}^{p} \times e(r_{i}^{p}),$$
$$\hat{r}_{i}^{\iota} = \sum_{e \in \mathcal{S}_{s}} \alpha_{i,e}^{\iota} \times e(r_{i}^{\iota}) + \sum_{e \in \mathcal{S}_{\iota}} \alpha_{i,e}^{\iota} \times e(r_{i}^{\iota}),$$



User & Item - KAR

 KAR consistently improves AUC and logloss across 9 CTR models, with up to 1.6% AUC and 3.1% logloss gain

Backbone Model		AUC		Logloss				
	base	KAR	improv.	base	KAR	improv.		
DCNv2	0.7924	0.8049*	1.58 %	0.5451	0.5315*	2.50 %		
DCN	0.7929	0.8043*	1.46 %	0.5457	0.5319*	2.53 %		
DeepFM	0.7928	0.8041*	1.44 %	0.5462	0.5321*	2.57 %		
FiBiNet	0.7925	0.8051*	1.59 %	0.5450	0.5310*	2.56 %		
AutoInt	0.7934	0.8060*	1.59 %	0.5440	0.5297*	2.65 %		
FiGNN	0.7944	0.8054*	1.39 %	0.5424	0.5307*	2.16 %		
xDeepFM	0.7942	0.8041*	1.25 %	0.5457	0.5317*	2.57 %		
DIEN	0.7960	0.8059*	1.25 %	0.5469	0.5298*	3.13 %		
DIN	0.7975	0.8066*	1.15 %	0.5387	0.5304*	1.55%		

 \ast denotes statistically significant improvement (t-test with p-value < 0.05) over the backbone model.

• **Practical Values:** KAR offers a practical, modular, and efficient solution to enhance recommenders using LLM-generated knowledge, without modifying their internal architecture.

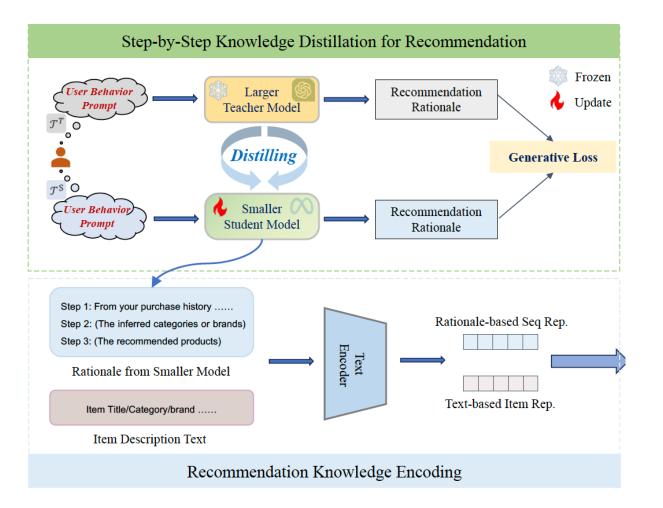
- Background
 - LLMs show strong reasoning ability and knowledge but are expensive and hard to deploy in real systems.
- Motivation
 - One-shot generation by LLMs often produces irrelevant or incorrect recommendations.
 - The scale and inference cost of LLMs are prohibitive for production use.
- Contribution
 - Propose SLIM, use CoT prompting with LLMs to generate rationales.
 - Distill these rationales into a small LLM for efficient deployment.
 - Enable both ID-based and ID-agnostic recommendation by encoding rationales and item descriptions via a text encoder.

User & Item - SLIM

August 3-7, 2025 KDD2+25 CityU

- Step-by-Step Knowledge Distillation
 - Chain-of-Thought Prompting on Teacher Model with user prompt:
 - Summarize preferences
 - Infer categories or brands
 - Recommend specific products
 - Fine-tune Student Model with Rationales:
 - The objective is to minimize generative loss

$$\mathcal{L}_{ ext{distill}} = \sum_{u \in U'} \sum_{t=1}^{|r'_u|} \log P_ heta(r'_{u,t}|p'_u,r'_{u,< t})$$



User & Item - SLIM

- Rationale Encoding and Enhanced Recommendation
 - Text Encoding:
 - Convert student-generated rationales r_u and item descriptions f_i into embeddings

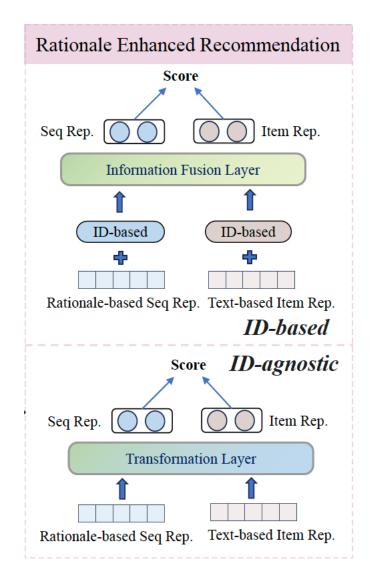
 $\mathbf{z}_{ ext{text},i} = ext{TextEncoder}(f_i), \quad \mathbf{s}_{ ext{text},u} = ext{TextEncoder}(r_u)$

- ID-Based Integration:
 - Use an Information Fusion Layer to combine text and ID embeddings

 $\mathbf{z}_i = g_f([g_l(\mathbf{z}_{ ext{text},i});\mathbf{z}_{ ext{id},i}]), \quad \mathbf{s}_u = g_f([g_l(\mathbf{s}_{ ext{text},u});\mathbf{s}_{ ext{SeqEnc},u}])$

- ID-Agnostic Matching:
 - Apply a transformation to match rationale and item vectors

$$\mathbf{z}_i = g_t(\mathbf{z}_{ ext{text},i}), \quad \mathbf{s}_u = g_t(\mathbf{s}_{ ext{text},u})$$



User & Item - SLIM

• SLIM consistently improves performance across three datasets and three backbone models (GRU4Rec, SASRec, SRGNN), outperforming both traditional and ChatGPT-augmented baselines.

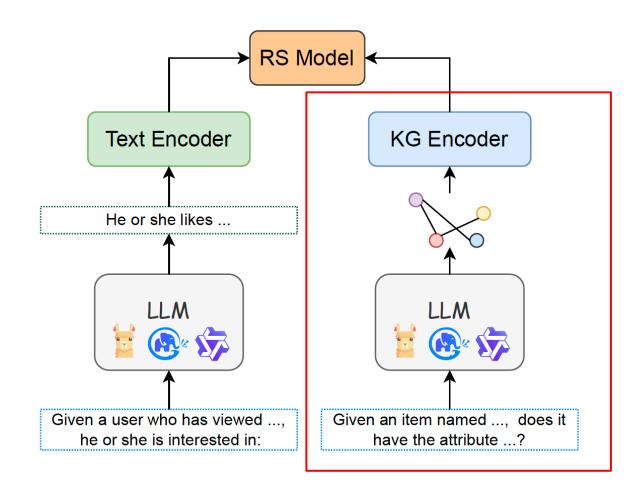
	Games				Food			Home			
Methods	NDCG@10	Hit @10	Hit @20	NDCG@10	Hit @10	Hit @20	NDCG@10	Hit @10	Hit @20		
GRU4Rec	17.61 ± 0.18	30.87 ± 0.56	42.39 ± 0.62	9.10 ± 0.30	15.27 ± 0.58	19.51± 0.24	2.19 ± 0.21	4.17 ± 0.39	7.53 ± 0.64		
GRU4Rec ⁺	27.33 ± 0.53	44.06 ± 0.79	56.53 ± 1.24	17.75 ± 0.78	31.10 ± 1.09	45.01 ± 1.46	12.19 ± 1.02	26.76 ± 2.58	49.10 ± 3.82		
SLIM-	27.70 ± 0.47	45.13 ± 0.56	57.70 ± 0.37	17.97 ± 0.70	31.78 ± 1.47	46.88 ± 2.10	13.59 ± 1.05	30.30 ± 2.01	55.85 ± 3.55		
SLIM	28.37 ± 0.41	45.68 ± 0.53	58.09 ± 0.58	18.32 ± 0.53	32.56 ± 1.30	46.92 ± 1.82	15.64 ± 0.51	34.33 ± 1.53	62.93 ± 3.46		
Improv.	3.81%	3.68%	2.76%	3.21%	4.69%	4.24%	28.3%	28.29%	28.17%		
SASRec	22.73 ± 0.28	37.77 ± 0.52	51.53 ± 0.39	26.78 ± 0.24	35.78 ± 0.36	43.32 ± 0.55	2.66 ± 0.22	5.56 ± 0.72	14.93 ± 1.53		
SASRec ⁺	27.46 ± 0.19	44.88 ± 0.63	58.90 ± 0.38	30.95 ± 0.38	44.98 ± 0.53	55.61 ± 1.12	5.58 ± 0.10	11.09 ± 0.16	20.69 ± 0.77		
SLIM-	31.58 ± 0.35	50.83 ± 0.62	63.45 ± 0.71	32.65 ± 0.15	48.01 ± 0.48	59.25 ± 0.56	5.95 ± 0.32	11.83 ± 0.62	22.43 ± 0.54		
SLIM	31.43 ± 0.39	51.11 ± 0.82	64.10 ± 0.26	32.80 ± 0.40	48.27 ± 0.64	59.30 ± 0.89	6.01 ± 0.19	12.01 ± 0.38	22.29 ± 0.85		
Improv.	14.46%	13.88%	8.83%	5.98%	7.31%	6.64%	7.71%	8.3%	7.73%		
SRGNN	16.45 ± 0.22	29.29 ± 0.14	40.99 ± 0.52	10.99 ± 2.07	20.32 ± 4.30	32.14 ± 6.55	5.04 ± 0.83	13.48 ± 2.23	37.22 ± 3.85		
SRGNN ⁺	21.54 ± 0.64	36.77 ± 1.05	49.11 ± 1.54	11.91 ± 0.71	21.39 ± 1.91	33.63 ± 3.41	11.61 ± 1.14	25.22 ± 2.46	43.85 ± 3.58		
SLIM ⁻	22.35 ± 1.48	37.69 ± 1.53	51.29 ± 0.59	12.92 ± 0.78	23.80 ± 1.60	37.22 ± 2.75	11.25 ± 1.42	24.28 ± 3.19	44.05 ± 5.97		
SLIM	23.77 ± 0.20	39.81 ± 0.52	52.34 ± 0.63	12.38 ± 0.51	22.98 ± 1.30	36.44 ± 1.72	12.29 ± 1.39	26.51 ± 2.71	47.01 ± 3.61		
Improv.	10.35%	8.27%	6.58%	3.95%	7.43%	8.36%	5.86%	5.11%	7.21%		

• **Practical Values:** SLIM enables small language models to act as effective reasoners in sequential recommendation by distilling step-by-step rationales from LLMs at a fraction of the computational cost.

August 3-7, 2025

Knowledge Graph

- Summary text is a type of unstructured knowledge, while the structured Knowledge Graph (KG) may drive better integration.
- Many work explore how to apply the LLM to generate a KG or augment an existing KG for enhancing RS.
- Categories
 - Generation
 - Completion & Fusion



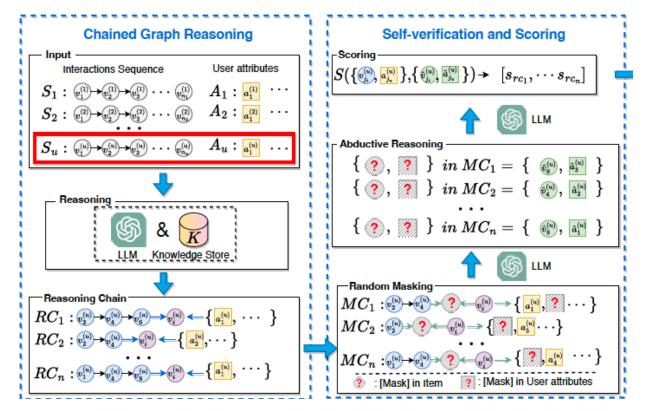
- Background
 - Recent works use knowledge graphs or behavior graphs to enhance reasoning, but most rely on pre-defined structures and cannot flexibly adapt to personalized needs.
 - LLMs exhibit powerful reasoning and abductive inference ability.
- Motivation
 - Can LLMs generate personalized multi-hop reasoning chains for sequential RS?
 - How can we verify, score, and incorporate these LLM-generated chains into realworld recommenders?
 - Can this be done without relying on explicit external knowledge graphs?
- Contributions
 - Adaptive Reasoning Module

Generation - LLMRG

August 3-7, 2025

- Chain Construction and Verification
 - Chained Graph Reasoning
 - LLM builds reasoning chains RC from interaction sequence S_u and attribute A_u
 - Random Masking & Abductive Reasoning
 - Each chain is perturbed into masked candidates MC_i .
 - The LLM performs abductive reasoning to infer whether masked parts still lead to the correct reasoning path.
 - Scoring

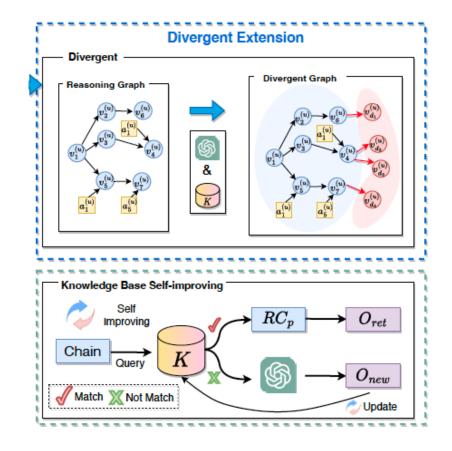
$$S(RC_i, A_u, S_u) o [s_{RC_1}, \dots, s_{RC_n}]$$



Generation - LLMRG

- Reasoning Enhancement and Model Fusion
 - Divergent Extension:
 - From the reasoning graph, LLM identifies alternative paths by querying unexplored nodes, forming divergent reasoning graphs.
 - Self-Improving Knowledge Base:
 - Mismatches between retrieved reasoning and newly inferred reasoning are used to update the knowledge base.
 - Final Fusion:

$$E_{
m fusion} = {
m Fusion}(E_{
m base}, E_{
m ori}, E_{
m div})$$



Generation - LLMRG

August 3-7, 2025

• LLMRG improves NDCG and HR by over 25–30% on ML-1M, Amazon Beauty, and Amazon Clothing, outperforming all baselines.

Dataset	Matria	FDSA			BERT4Rec			CL4SRec			DuoRec		
	Metric	Original	GPT3.5	GPT4	Original	GPT3.5	GPT4	Original	GPT3.5	GPT4	Original	GPT3.5	GPT4
ML-1M	HR@5 HR@10 NDCG@5 NDCG@10	0.0909 0.1631 0.0599 0.0878	+ 20.70% + 17.93 % + 21.33% + 21.78%	+ 25.79% + 22.87% + 30.27 % + 28.25%	0.1124 0.1910 0.0713 0.0980	+ 26.67% + 13.52 % + 25.74 % + 23.34%	+ 32.56% + 16.49 % + 32.82 % + 28.06%	0.1141 0.1866 0.0721 0.1013	+ 19.98% + 17.30 % + 14.97 % + 17.67%	+ 21.02% + 19.31 % + 16.78 % + 20.42%	0.2011 0.2837 0.1265 0.1663	+ 12.87% + 14.10 % + 23.55 % + 12.86%	+ 14.76% + 15.53 % + 26.01 % + 13.77%
Amazon Beauty	HR@5 HR@10 NDCG@5 NDCG@10	0.0237 0.0418 0.0195 0.0275	+ 13.89 % + 15.02 % + 16.20 % + 14.78 %	+ 17.53 % + 17.78 % + 18.64 % + 17.64 %	0.0201 0.0413 0.0192 0.0263	+ 19.17 % + 17.79 % + 14.21 % + 11.53 %	+ 23.22 % + 22.14 % + 17.63 % + 14.76 %	0.0398 0.0664 0.0221 0.0322	+ 11.15 % + 10.22 % + 8.45 % + 8.17 %	+ 14.15 % + 11.32 % + 10.18 % + 9.68 %	0.0552 0.0839 0.0350 0.0447	+ 9.31 % + 5.14 % + 7.42 % + 6.67 %	+ 11.93 % + 6.61 % + 9.24 % + 7.95 %
Amazon Clothing	HR@5 HR@10 NDCG@5 NDCG@10	0.0119 0.0197 0.0073 0.0109	+ 20.67 % + 14.45 % + 8.16 % + 6.01 %	+ 23.92 % + 17.88 % + 10.86 % + 8.13 %	0.0128 0.0202 0.0081 0.0113	+ 16.09 % + 10.52 % + 7.39 % + 5.21 %	+ 19.10 % + 13.72 % + 10.39 % + 5.94 %	0.0166 0.0273 0.0093 0.0125	+ 7.90 % + 11.21 % + 6.02 % + 4.32 %	+ 10.92 % + 14.99 % + 9.09 % + 8.07 %	0.0190 0.0311 0.0118 0.0155	+ 9.98 % + 7.65 % + 6.74 % + 7.89 %	+ 11.40 % + 9.48 % + 9.19 % + 9.29 %

 Practical Values: LLMRG enables LLM-based, adaptive, multi-hop reasoning without external knowledge graphs, improving recommendation via personalized and verifiable chains.

• Background

• Existing KG-based recommenders often convert textual information into IDs, ignore semantic connections, and struggle to capture high-order relations due to GNNs' limitations.

Motivation

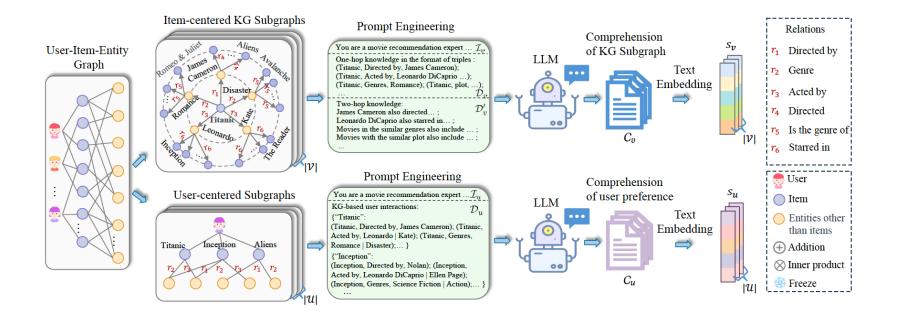
- KGs are incomplete or too sparse
- Converting entities into IDs discards rich semantic information, and GNNs fail to effectively propagate information over long distances in the KG.
- Contributions
 - Item-item semantic graph
 - Representation alignment and neighbor augmentation modules

Completion & Fusion - CoLaKG

- KG Comprehension via LLM
 - Item-centered KG Subgraph Construction
 - Text Conversion & Prompting
 - Embedding Generation
 - Use pre-trained model P to obtain semantic embedding

- $T_{v} = \{(v, r, e)\}$
 - $C_v = \mathrm{LLMs}(I_v, D_v, D_v')$

 $s_v = P(C_v)$



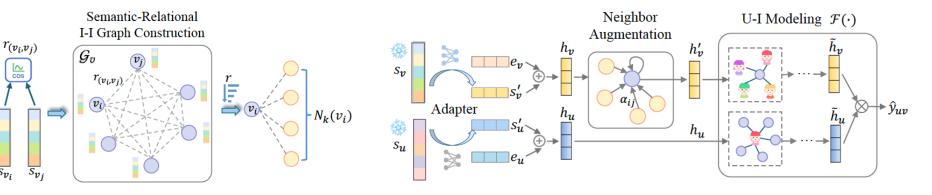
Completion & Fusion - CoLaKG

- Semantic Graph Construction & Integration
 - Semantic Item-Item Graph
 - Use cosine similarity to define edge weights
 - Construct graph
 - Representation Integration
 - Align semantic embeddings to ID space
 - Fuse with ID embeddings
 - Neighbor Augmentation

$$w_{ij} = a(Ws_{v_i} \| Ws_{v_j}), \quad lpha_{ij} = \mathrm{softmax}_j(w_{ij})$$

$$egin{aligned} r(v_i,v_j) &= ext{sim}(s_{v_i},s_{v_j}) \ \mathcal{G}_v &= \{(v_i,r(v_i,v_j),v_j)\} \end{aligned}$$

$$egin{aligned} s_v' &= \sigma(W_1 s_v), \quad s_u' &= \sigma(W_2 s_u) \ h_v &= rac{1}{2}(e_v + s_v'), \quad h_u &= rac{1}{2}(e_u + s_u') \ \mathbf{h}_{v_i}' &= \sigma\left(rac{1}{2}\left(\mathbf{h}_{v_i} + \sum_{j \in \mathcal{N}_k(v_i)} lpha_{ij} \mathbf{h}_{v_j}
ight)
ight) \end{aligned}$$



Completion & Fusion - CoLaKG

• CoLaKG achieves the best performance across all four datasets, demonstrating strong generalization and semantic reasoning ability.

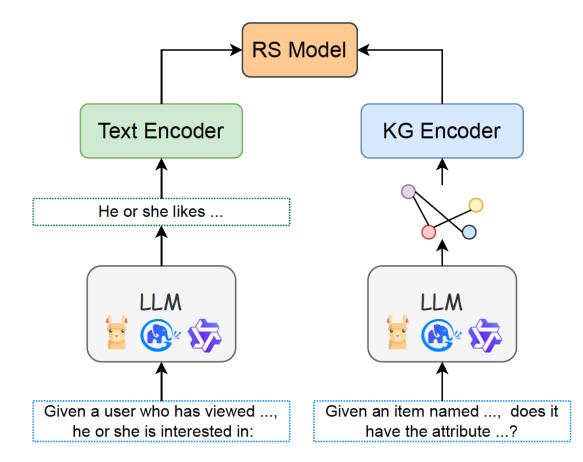
Model		Movi	eLens			Last-FM			MIND				Funds			
mouel	R@10	N@10	R@20	N@20	R@10	N@10	R@20	N@20	R@10	N@10	R@20	N@20	R@10	N@10	R@20	N@20
BPR-MF	0.1257	0.3100	0.2048	0.3062	0.1307	0.1352	0.1971	0.1685	0.0315	0.0238	0.0537	0.0310	0.4514	0.3402	0.5806	0.3809
NFM	0.1346	0.3558	0.2129	0.3379	0.2246	0.2327	0.3273	0.2830	0.0495	0.0356	0.0802	0.0458	0.4388	0.3187	0.5756	0.3651
LightGCN	0.1598	0.3901	0.2512	0.3769	0.2589	0.2799	0.3642	0.3321	0.0624	0.0492	0.0998	0.0609	0.4992	0.3778	0.6353	0.4204
CKE	0.1524	0.3783	0.2373	0.3609	0.2342	0.2545	0.3266	0.3001	0.0526	0.0417	0.0822	0.0510	0.4926	0.3702	0.6294	0.4130
RippleNet	0.1415	0.3669	0.2201	0.3423	0.2267	0.2341	0.3248	0.2861	0.0472	0.0364	0.0785	0.0451	0.4764	0.3591	0.6124	0.4003
KGAT	0.1536	0.3782	0.2451	0.3661	0.2470	0.2595	0.3433	0.3075	0.0594	0.0456	0.0955	0.0571	0.5037	0.3751	0.6418	0.4182
KGIN	0.1631	0.3959	0.2562	0.3831	0.2562	0.2742	0.3611	0.3215	0.0640	0.0518	0.1022	0.0639	0.5079	0.3857	0.6428	0.4259
KGCL	0.1554	0.3797	0.2465	0.3677	0.2599	0.2763	0.3652	0.3284	0.0671	0.0543	0.1059	0.0670	0.5071	0.3877	0.6355	0.4273
KGRec	0.1640	0.3968	0.2571	0.3842	0.2571	0.2748	0.3617	0.3251	0.0627	0.0506	0.1003	0.0625	0.5104	0.3913	0.6467	0.4304
RLMRec	0.1613	0.3920	0.2524	0.3787	0.2597	0.2812	0.3651	0.3335	0.0619	0.0486	0.0990	0.0602	0.4988	0.3784	0.6351	0.4210
CoLaKG	0.1699	0.4130	0.2642	0.3974	0.2738	0.2948	0.3803	0.3471	0.0698	0.0562	0.1087	0.0684	0.5273	0.4012	0.6524	0.4392

• **Practical Values:** By leveraging LLMs to comprehend and augment KG information, CoLaKG bridges the gap between structured knowledge and collaborative filtering, resulting in more robust and semantically aligned recommendation

Combination

August 3-7, 2025 KDD2+25

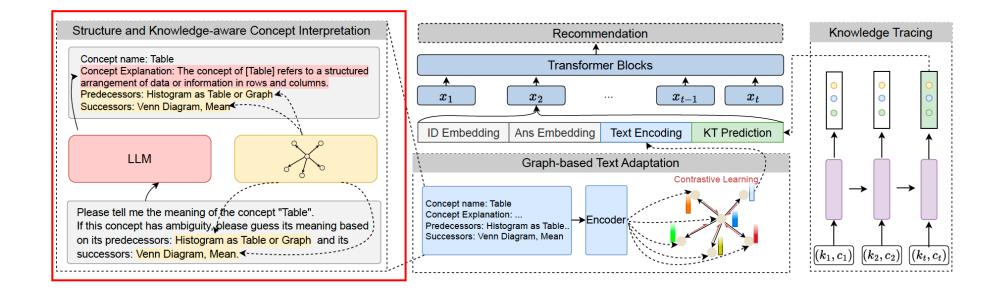
• In consideration of the effectiveness of Summary text and Knowledge graph, some work also resort to combine both of them.



- Background
 - Existing KT and recommendation models often rely on ID-based concept representations, which fail to generalize and lack interpretability.
- Motivation
 - Prior methods overlook the textual and relational information between concepts, which leads to limited generalization, especially when dealing with unseen or ambiguous concepts.
- Contributions
 - Structure and Knowledge-aware Concept Interpretation
 - Graph-based Text Adaptation

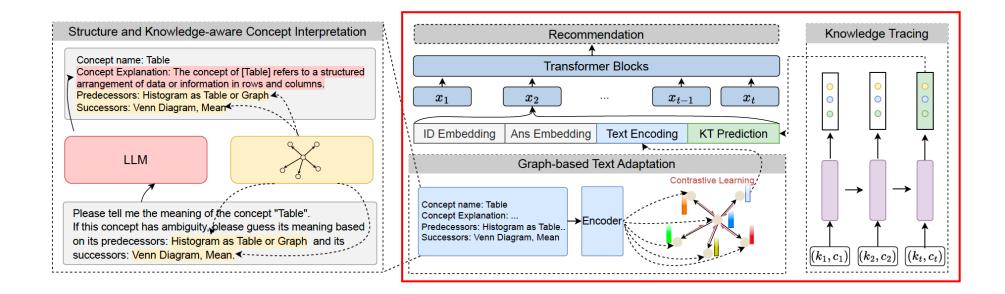
Combination - SKarRec

- Structure and Knowledge-aware Concept Interpretation
 - For a given concept *c*, SKarRec constructs prompt with (1) name and explanation (2) its predecessors and successors in the concept graph
 - Prompt is sent to LLM to generate rich interpretation
 - The interpreted concept text is used as semantic anchor for downstream tasks



Combination - SKarRec

- Graph-based Text Adaptation for Recommendation and Tracing
 - Interpreted concept texts are encoded into embeddings using a transformer encoder.
 - Graph G over concepts is built using their relations
 - Contrastive learning: positive pair (connected nodes), negative pair (unconnected)

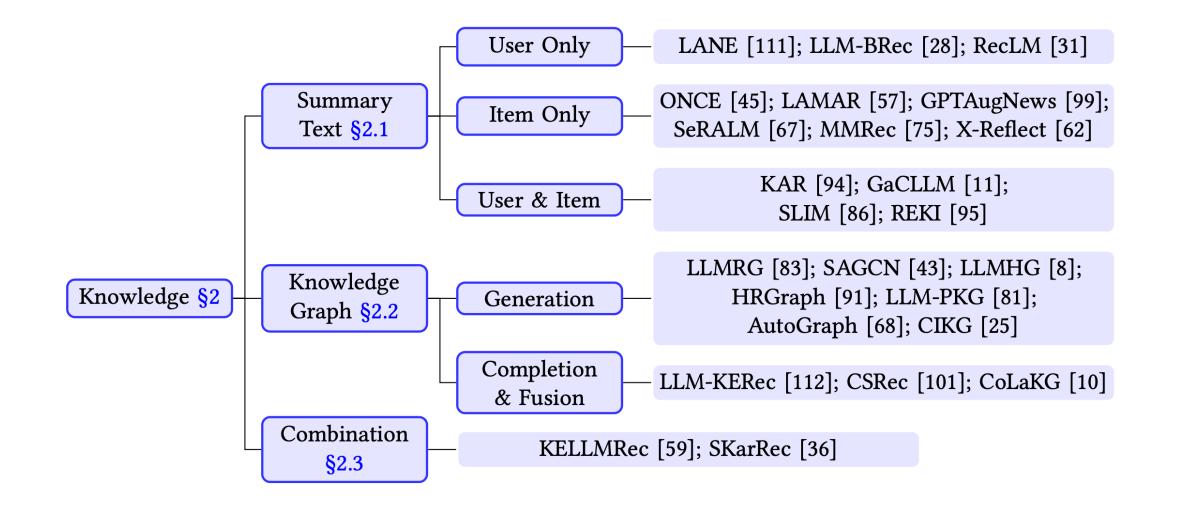


• SKarRec achieves the best performance on ASSIST09, ASSIST12, and Junyi across all three metrics, significantly outperforming prior graph-based, text-only, and ID-only methods.

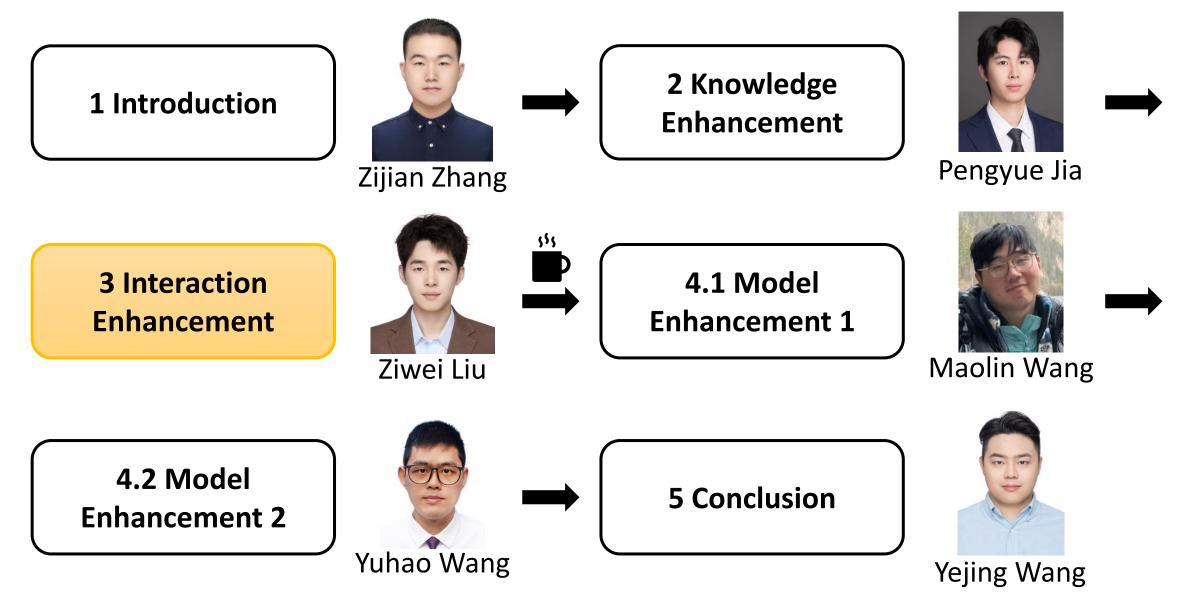
		Graph-bas	ed Methods	ID-Only Methods Text-Only Methods		ID-Text Methods					
Dataset	Metric	ACKRec	GCARec	SASRec	BERT4Rec	ZESRec	RECFORMER	FDSA	S3-Rec	UniSRec	SKarRec
	HR@1	0.2408	0.2513	0.7649	0.1935	0.5809	0.6072	0.7627	0.7661	0.7597	0.7922*
ASSIST09	NDCG@5	0.3787	0.3904	0.8736	0.2203	0.7269	0.6540	0.8722	0.8731	0.8647	0.8838*
	MRR	0.3627	0.3756	0.8503	0.2342	0.6998	0.6711	0.8484	0.8505	0.8439	0.8646*
	HR@1	0.1976	0.2119	0.2838	0.2540	0.2596	0.1990	0.2861	0.2904	0.2888	0.2933*
ASSIST12	NDCG@5	0.3078	0.3169	0.4895	0.4247	0.4649	0.2055	0.4886	0.4957	0.4934	0.4954
	MRR	0.3064	0.3182	0.4574	0.4047	0.4343	0.2536	0.4579	0.4633	0.4617	0.4645*
	HR@1	0.1447	0.1284	0.8469	0.3550	0.8546	0.8279	0.8492	0.8608	0.8407	0.8730*
Junyi	NDCG@5	0.1872	0.1650	0.8907	0.4826	0.8930	0.7625	0.8917	0.9022	0.8890	0.9076*
	MRR	0.1918	0.1740	0.8825	0.4661	0.8860	0.8497	0.8840	0.8942	0.8799	0.9014*

• Practical Values: By integrating structural graph knowledge and language-model-based semantic reasoning, SKarRec offers a robust framework for educational recommendation and knowledge tracing with superior generalization and interpretability

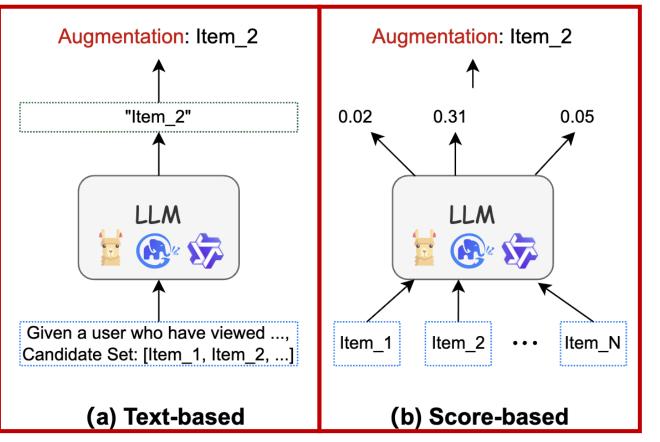
Summary



Agenda



We basically divide the categories of LLM for interaction enhancement in two aspects:



Text-based:

As shown in Figure (a), test-based methods first conclude a candidate set and then utilize LLM to conduct the possible next interacted item to achieve augmentation.

□Score-based:

For comparison (shown in Figure (b)), score-based methods utilize LLM to rank the importance of each item.

August 3-7, 2025 KDD2+25 CityU

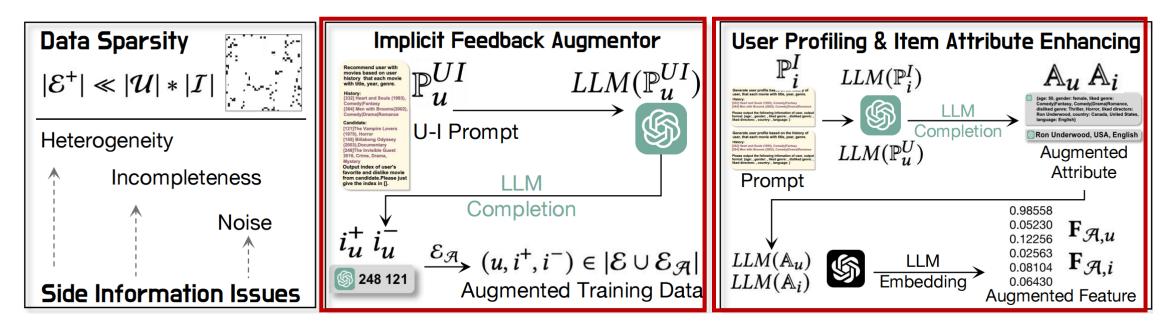
Low-quality side information & Data Sparsity often contains bad affects, which severely affects the accuracy of recommendation.

Large Language Model (LLM) is a promising technique to predict the user-item interaction and augment the side information of users/items. However, there are still two severe problems that hinder it work as a powerful data augmentor:

- Incomplete input information: It is hard to enable LLM to reason over full user-item interaction patterns due to the limited input token. (P1)
- Low-quality of generated data: LLM generators often introduce low-quality content that may compromise the results because of the noise and the hallucination of the model. (P2)

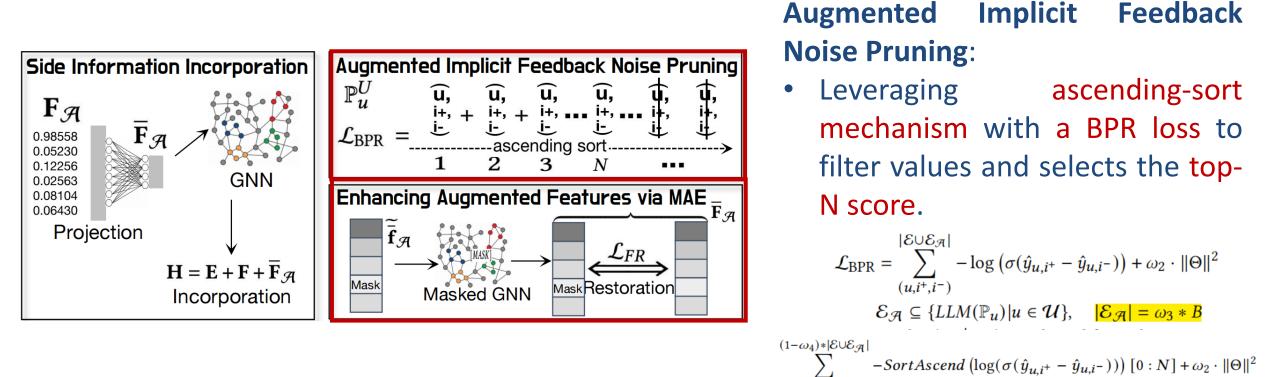
Wei, Wei, et al. "LImrec: Large language models with graph augmentation for recommendation." Proceedings of the 17th ACM International Conference on Web Search and Data Mining. 2024.

Specifically, for the first problem 'P1: Incomplete input information', The authors design two individual modules to from a natural language perspective.



- Implicit Feedback Augmentor: Feeding the side feature of items and an item candidates pool (acquired by a basic Rec model) into LLM.
- User Profiling & Item Attribute Enhancing: Leveraging LLM's reasoning ability to summarize users' interactions and unify the item attributes.

For the 'P2: Low-quality of generated data', The authors propose the Augmented Implicit Feedback Noise Pruning and Enhancing Augmented Features via MAE.



• Enhancing Augmented Semantic Features via MAE: 1. Masking features of selected subset of the node; 2. Leveraging feature restoration loss to compare the masked matrix with the original one. $\tilde{\bar{f}}_{\mathcal{A}} = \begin{cases} \mathbf{f}_{[MASK]} & v \in \tilde{\mathcal{V}} \\ \bar{\mathbf{f}}_{\mathcal{A}} & v \notin \tilde{\mathcal{V}} \end{cases} \mathcal{L}_{FR} = \frac{1}{|\tilde{\mathcal{V}}|} \sum_{v \in \tilde{\mathcal{V}}} (1 - \frac{\tilde{\bar{f}}_{\mathcal{A}} \cdot \bar{\mathbf{f}}_{\mathcal{A}}}{\|\tilde{\bar{f}}_{\mathcal{A}}\| \cdot \|\bar{\mathbf{f}}_{\mathcal{A}}\|})^{\gamma}$ ⁴⁹

 (u,i^+,i^-)

For the experimental results, LLMRec achieves remarkable results under two public datasets and beats all the compared baselines with significant improvement.

Baseline			Net	flix						Movi	eLens			
Dasenne	R@10	N@10	R@20	N@20	R@50	N@50	P@20	R@10	N@10	R@20	N@20	R@50	N@50	P@20
					Gene	ral Collabo	orative Filte	ring Metho	ds					
MF-BPR	0.0282	0.0140	0.0542	0.0205	0.0932	0.0281	0.0027	0.1890	0.0815	0.2564	0.0985	0.3442	0.1161	0.0128
NGCF	0.0347	0.0161	0.0699	0.0235	0.1092	0.0336	0.0032	0.2084	0.0886	0.2926	0.1100	0.4262	0.1362	0.0146
LightGCN	0.0352	0.0160	0.0701	0.0238	0.1125	0.0339	0.0032	0.1994	0.0837	0.2660	0.1005	0.3692	0.1209	0.0133
					Reco	ommender	s with Side	Information	n					
VBPR	0.0325	0.0142	0.0553	0.0199	0.1024	0.0291	0.0028	0.2144	0.0929	0.2980	0.1142	0.4076	0.1361	0.0149
MMGCN	0.0363	0.0174	0.0699	0.0249	0.1164	0.0342	0.0033	0.2314	0.1097	0.2856	0.1233	0.4282	0.1514	0.0147
GRCN	0.0379	0.0192	0.0706	0.0257	0.1148	0.0358	0.0035	0.2384	0.1040	0.3130	0.1236	0.4532	0.1516	0.0150
						Data Aug	mentation N	Methods						
LATTICE	0.0433	0.0181	0.0737	0.0259	0.1301	0.0370	0.0036	0.2116	0.0955	0.3454	0.1268	0.4667	0.1479	0.0167
MICRO	0.0466	0.0196	0.0764	0.0271	0.1306	0.0378	0.0038	0.2150	<u>0.1131</u>	0.3461	0.1468	<u>0.4898</u>	0.1743	0.0175
						Self-sup	pervised Me	thods						
CLCRec	0.0428	0.0217	0.0607	0.0262	0.0981	0.0335	0.0030	0.2266	0.0971	0.3164	0.1198	0.4488	0.1459	0.0158
MMSSL	0.0455	<u>0.0224</u>	0.0743	<u>0.0287</u>	0.1257	<u>0.0383</u>	0.0037	0.2482	0.1113	0.3354	0.1310	0.4814	0.1616	0.0170
LLMRec	0.0531	0.0272	0.0829	0.0347	0.1382	0.0456	0.0041	0.2603	0.1250	0.3643	0.1628	0.5281	0.1901	0.0186
<i>p</i> -value	$2.9e^{-4}$	$3.0e^{-3}$	$9.4e^{-5}$	$1.5e^{-3}$	$2.8e^{-5}$	$2.2e^{-3}$	$3.4e^{-5}$	$2.8e^{-5}$	$1.6e^{-2}$	$3.1e^{-3}$	$4.1e^{-4}$	$1.9e^{-3}$	$1.3e^{-2}$	$1.8e^{-3}$
Improv.	13.95%	21.43%	8.51%	20.91%	5.82%	19.06%	7.89%	4.88%	10.52%	5.26%	10.90%	7.82%	9.06%	6.29%

Overall Performance Results

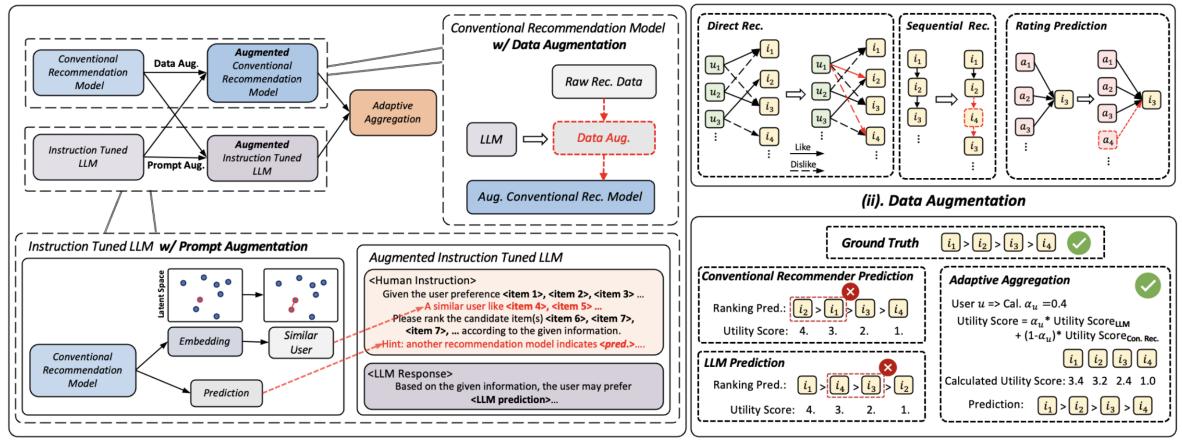
While **Conventional methods** excel at mining collaborative information and modeling sequential behavior, they struggle with data sparsity and long-tail problem.

Significant Gap

LLM-based methods are proficient at utilizing rich textual contexts, but face challenges in utilizing collaborative or sequential information.

- **Q1**: How to leverage LLM's reasoning ability in conventional methods?
- **Q2**: How to introduce collaborative/sequential informtaion in LLM-based methods?
- Q3: How to aggregate the LLM-based method and conventional methods properly?

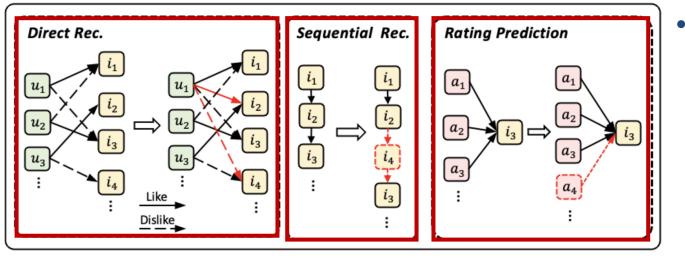
To overcome the above problems, the authors propose LlamaRec, which allows the conventional & LLM-based augmentation to mutually augment each other and adaptively aggregates the results.



(i). Overall Framework

(iii). Adaptive Aggregation

Specifically, for the first problem 'Q1: How to leverage LLM's reasoning ability in conventional methods?', The authors designed the Data Augmentation module.



Data Augmentation:

Direct Recommendation:

Leveraging LLM to rank each item pair and form the corresponding BPR loss:

$$\mathcal{L}'_{BPR} = -\sum_{(u,i,j)\in\mathcal{D}'} \log \sigma(\hat{y}_{ui} - \hat{y}_{uj})$$

Sequential Recommendation:

Leveraging LLM to predict the user prefered items in the un-interacted list, and then inserting them in the interaction sequence.

Rating Prediction:

Leveraging LLM's world knowledge to provide side information of item features.

For the second problem 'Q2: How to introduce collaborative/sequential informtaion in LLM-based methods?', The authors design the two Prompt Augmentation strategies.

Top-*k* **Recommendation Prompt Example**:

Instruction: Rank the candidate movies based on user historical interactions and make the top k recommendations. Interaction History: Beyond Rangoon (1995); Alien (1979); Hollow Reed (1996); Primary Colors (1998); ...; Birds, The (1963) Candidate Items: Last Dance (1996); Remains of the Day, The (1993); Assassins (1995); ...; Fatal Instinct (1993) Similar User Interaction History: L.A. Confidential (1997); Apt Pupil (1998); Kolya (1996); ...; Star Wars (1977) Conventional Model Prediction: Remains of the Day, The (1993); Addiction, The (1995); ...; Fugitive, The (1993) Output: Fugitive, The (1993); Angel Baby (1995); ...; Remains of the Day, The (1993)

Rating Prediction Prompt Example:

Instruction: Predict the rating of a target movie based on the user's historical movie ratings.

 Rating History: Independence Day (1996): 3; Grosse Fatigue

 (1994): 3; Face/Off (1997): 4; ...; Shall We Dance? (1996): 3

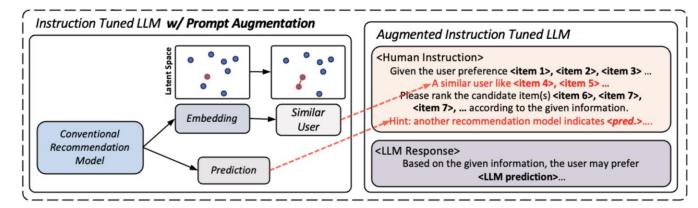
 Candidate Item: Pink Floyd - The Wall (1982)

 Similar User Rating History: L.A. Confidential (1997): 3; Apt

 Pupil (1998): 4; ...; English Patient, The (1996): 3

Conventional Model Prediction: 3.2

Output: 3



• Information from Similar User:

Regarding the interacted items of similar users as collaborative information to enrich the prompt for LLM Instruction-tuning.

• Knowledge from Conventional Rec Model:

Combining the prediction results from conventional models with the prompt.

Moreover, for 'Q3: How to aggregate the LLM-based method and conventional methods properly?', LlamaRec introduce the Adaptive Aggregation.

Ground Truth	$i_1 > i_2 > i_3 > i_4$					
Conventional Recommender Prediction Ranking Pred.: $i_2 > i_1 > i_3 > i_4$ Utility Score: 4. 3. 2. 1. LLM Prediction Ranking Pred.: $i_1 > i_4 > i_3 > i_2$ Utility Score: 4. 3. 2. 1.	Adaptive AggregationUser $u \Rightarrow$ Cal. $\alpha_u = 0.4$ Utility Score = α_u^* Utility Score _{LLM} + $(1-\alpha_u)^*$ Utility Score _{Con. Rec.} i_1 i_2 i_3 i_4 Calculated Utility Score: 3.4 3.2 2.4 1.0 Prediction: $i_1 > i_2 > i_3 > i_4$					

Long-tail coefficient:

$$\ell_u = \log\left(N(u) + 1\right)$$

The Utility Score of Rating Prediction task can be formulize as:

$$\alpha_u = \max\left(\frac{\ell_{max} - \ell_u}{\ell_{max} - \ell_{min}}, \alpha_2\right) \cdot \alpha_1$$
$$U_u = \alpha_u U_{LLM} + (1 - \alpha_u) U_{Rec}$$

For the top-k recommendation task, the LLM is employed to rerank the item list and the Utility Score can be calculated as the same.

For the experimental results, LlamaRec achieves optimal results under three public datasets and three recommendation tasks.

Backbone	Method		ML-	100K			ML	-1M			BookC	rossing	
Duckbone	Methou	H@3↑	N@3↑	H@5↑	N@5↑	H@3↑	N@3↑	H@5↑	N@5↑	H@3↑	N@3↑	H@5↑	N@5↑
	Base	0.0455	0.0325	0.0690	0.0420	0.0255	0.0187	0.0403	0.0248	0.0294	0.0227	0.0394	0.0269
MF	IFT	0.0546	0.0388	0.0790	0.0488	0.0242	0.0175	0.0410	0.0244	0.0247	0.0177	0.0377	0.0230
IVII	Llama4Rec	0.0645*	0.0474*	0.0919*	0.0588*	0.0281*	0.0203*	0.0433 *	0.0265*	0.0365*	0.0284^{*}	0.0462*	0.0324*
	Impro.	18.13%	22.16%	16.33%	20.49%	10.20%	8.56%	5.61%	6.85%	24.15%	25.55%	17.26%	20.45%
	Base	0.0492	0.0343	0.0744	0.0447	0.0283	0.0203	0.0432	0.0264	0.0358	0.0272	0.0480	0.0322
LightGCN	IFT	0.0537	0.0381	0.0846	0.0507	0.0268	0.0193	0.0441	0.0263	0.0287	0.0202	0.0448	0.0268
LightGCN	Llama4Rec	0.0647*	0.0476*	0.0967*	0.0608*	0.0304*	0.0222*	0.0461*	0.0286*	0.0434*	0.0338*	0.057*	0.0394*
	Impro.	20.48%	24.93%	14.30%	19.92%	7.42%	9.36%	4.54%	8.33%	21.23%	24.26%	18.75%	22.36%
	Base	0.0526	0.0401	0.0757	0.0496	0.0159	0.0115	0.0238	0.0147	0.0426	0.0330	0.0556	0.0384
MixGCF	IFT	0.0617	0.0452	0.0906	0.0570	0.0162	0.0114	0.0259	0.0154	0.0337	0.0243	0.0506	0.0312
MIXOCI	Llama4Rec	0.0690*	0.0515*	0.0949*	0.0621*	0.0174*	0.0128*	0.0259	0.0162*	0.0495*	0.0384*	0.0635*	0.0441*
	Impro.	11.83%	13.94%	4.75%	8.95%	7.41%	11.30%	0.00%	5.19%	16.20%	16.36%	14.21%	14.84%
	Base	0.0505	0.0380	0.0729	0.0472	0.0284	0.0206	0.0434	0.0267	0.0419	0.0319	0.0566	0.0380
SGL	IFT	0.0520	0.0392	0.0792	0.0503	0.0275	0.0202	0.0438	0.0269	0.0326	0.0237	0.0499	0.0307
SOL	Llama4Rec	0.0632*	0.0479*	0.0917*	0.0596*	0.0308*	0.0224*	0.0480 *	0.0294*	0.0501*	0.0393*	0.0634*	0.0448*
	Impro.	21.54%	22.19%	15.78%	18.49%	8.45%	8.74%	9.59%	9.29%	19.57%	23.20%	12.01%	17.89%

Overall Performance achieved by Direct Recommendation Models

For the experimental results, LlamaRec achieves optimal results under three public datasets and three recommendation tasks.

Backbone	Method		ML-	100K			ML-	·1M		BookCrossing			
Duckbolic	methou	H@3↑	N@3↑	H@5↑	N@5↑	H@3↑	N@3↑	H@5 ↑	N@5↑	H@3↑	N@3↑	H@5↑	N@5↑
	Base	0.0187	0.0125	0.0385	0.0205	0.0277	0.0165	0.0502	0.0257	0.0086	0.0049	0.0163	0.0081
CACD	IFT	0.0204	0.0136	0.0379	0.0207	0.0241	0.0159	0.0473	0.0254	0.0124	0.0086	0.0185	0.0111
SASRec	Llama4Rec	0.0238*	0.0155*	0.0449*	0.0240*	0.0293*	0.0201*	0.0504	0.0287*	0.0142*	0.0098*	0.0227*	0.0131*
	Impro.	16.67%	13.97%	16.62%	15.94%	5.78%	21.82%	0.40%	11.67%	14.52%	13.95%	22.70%	18.02%
	Base	0.0153	0.0104	0.0294	0.0161	0.0107	0.0069	0.0211	0.0112	0.0088	0.0058	0.0161	0.0088
	IFT	0.0174	0.0119	0.0326	0.0100	0.0106	0.0071	0.0188	0.0104	0.0127	0.0092	0.0180	0.0113
BERT4Rec	Llama4Rec	0.0198*	0.0134 *	0.0332	0.0189*	0.0115*	0.0078*	0.0206	0.0115*	0.0154*	0.0108*	0.023 *	0.0139*
	Impro.	13.79%	12.61%	1.84%	17.39%	7.48%	9.86%	-2.37%	2.68%	21.26%	17.39%	27.78%	23.01%
	Base	0.0243	0.0143	0.0436	0.0222	0.0259	0.0153	0.0492	0.0248	0.0083	0.0048	0.0165	0.0082
CL (CD)	IFT	0.0230	0.0149	0.0428	0.0230	0.0234	0.0155	0.0447	0.0241	0.0102	0.0071	0.0177	0.0102
CL4SRec	Llama4Rec	0.0255*	0.0182*	0.0440	0.0255*	0.0278*	0.0185*	0.0482	0.0268*	0.0138*	0.0093*	0.0220*	0.0127*
	Impro.	4.94%	22.15%	0.92%	10.87%	7.34%	19.35%	-2.03%	8.06%	35.29%	30.99%	24.29%	24.51%

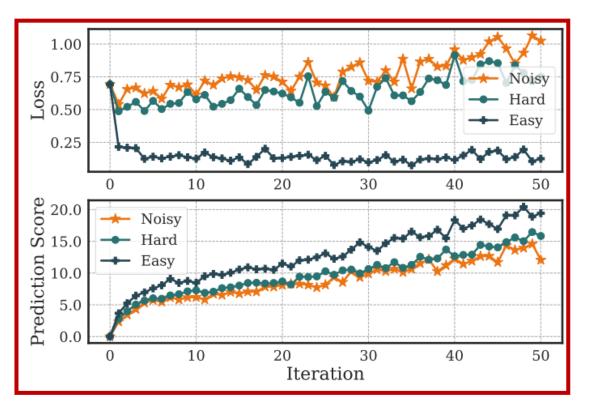
Overall Performance achieved by Sequential Recommendation Models

For the experimental results, LlamaRec achieves optimal results under three public datasets and three recommendation tasks.

Backbone	Method	ML-	100K	ML	-1M	BookCrossing		
Duchbolie	incurou	RMSE ↓	MAE ↓	RMSE ↓	MAE ↓	RMSE ↓	MAE↓	
LLaMA	IFT	1.2792	0.8940	1.2302	0.8770	2.0152	1.3782	
	Base	1.0487	0.8082	0.9455	0.7409	1.7738	1.3554	
DeepFM	Llama4Rec	1.0306*	0.7987*	0.9360*	0.7321*	1.6958*	1.2843*	
	Impro.	1.73%	1.18%	1.00%	1.19%	4.40%	5.25%	
	Rase	1.0284	0.8005	0.9438	0 7364	2 1 2 1	1 5984	
NFM	Llama4Rec	1.0189*	0.7961	0.9369*	0.7303*	1.9253*	1.4473	
	Impro.	0.92%	0.55%	0.73%	0.83%	9.23%	9.45%	
	Base	1 0478	0.8063	0.9426	0 7342	2 0 2 1 6	1 4622	
DCN	Llama4Rec	1.0367*	0.8033	0.9345*	0.7272*	1.8518*	1.3566	
	Impro.	1.06%	0.37%	0.86%	0.95%	8.40%	7.22%	
	Base	1.0471	0.8035	0.9508	0.7464	1.6516	1.2614	
AFM	Llama4Rec	1.0340*	0.7996	0.9426*	0.7394*	1.6244*	1.2259	
	Impro.	1.25%	0.49%	0.86%	0.94%	1.65%	2.81%	
	Base	1,1472	0.8836	0.9519	0.7428	2.1756	1.6461	
xDeepFM	Llama4Rec	1.0947*	0.8483*	0.9401*	0.7336*	1.9610*	1.4833	
-	Impro.	4.58%	4.00%	1.24%	1.24%	9.86%	9.89%	
	Base	1.0500	0 8120	0 9471	0 7404	1 9148	1 4501	
AutoInt	Llama4Rec	1.0369*	0.8059*	0.9382*	0.7326*	1.7917*	1.3492	
	Impro.	1.25%	0.75%	0.94%	1.05%	6.43%	6.96%	

Overall Performance achieved by Rating Prediction Models

Although Large Language Models (LLM) show potential in denoising recommendation, there are still some challenges that hinders the directly application of LLM:



• **C1**: High Cost of LLM Summarization:

Assessing the preferences of all users across all items is computationally intensive.

• C2: Misidentifying of Hard Sample & Noise:

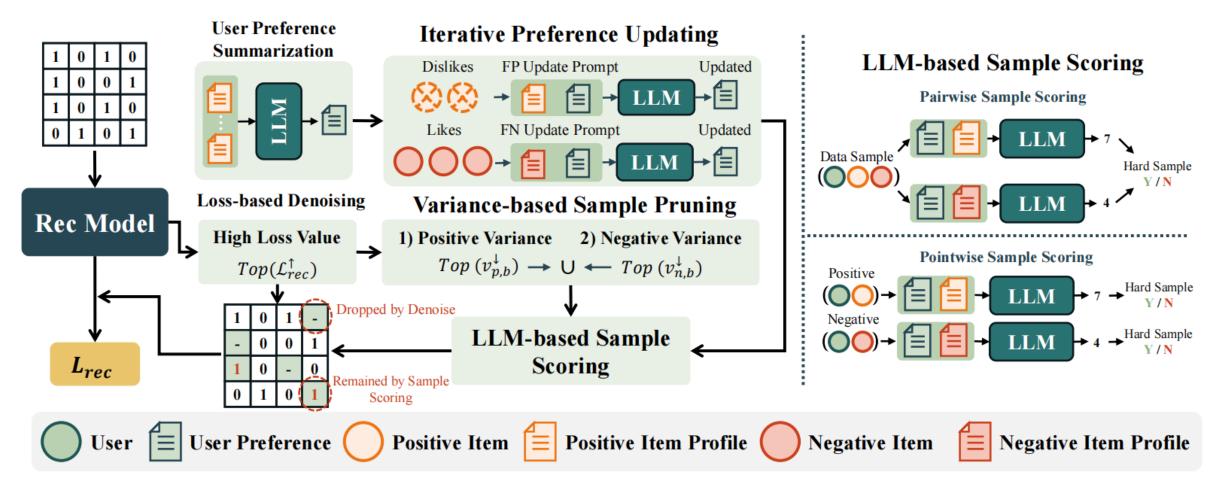
It is challenging to distinguish the difference between the Noisy and Hard Example.

• C3: Biased User Preference:

False-positive items can lead to biased user preference summarization.

Song, Tianrui, Wenshuo Chao, and Hao Liu. "Large Language Model Enhanced Hard Sample Identification for Denoising Recommendation." arXiv preprint arXiv:2409.10343 (2024).

To address the above challenges, the authors proposed LLMHD, featuring with Variance-based Sample Pruning, LLM-based Sample Scoring, and Iterative Preference Updating to fully explore the capabilities of LLM in denosing recommendation.



To address **C1: High Cost of LLM Summarization**, LLMHD introduce the Variance-based Sample Pruning module.

1) Positive Variance2) Negative Variance

$$Top (v_{p,b}^{\downarrow}) \longrightarrow \bigcup \longleftarrow Top (v_{n,b}^{\downarrow})$$

Following the observation of previous work: <u>hard samples exhibit relatively higher</u> prediction score variance compared to noisy samples, LLMHD calculate and sort the prediction score of positive/negative items as follows:

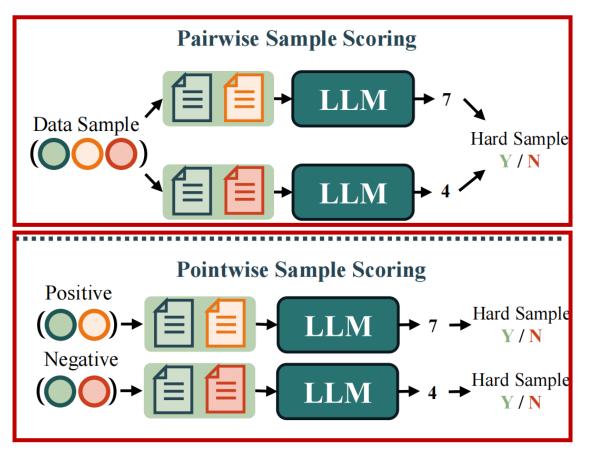
$$v_{p,1}^{\downarrow} > v_{p,2}^{\downarrow} > \dots > v_{p,b}^{\downarrow} > \dots > v_{p,|\mathcal{B}_N^p|}^{\downarrow}, b \in \mathcal{B}_N,$$
$$v_{n,1}^{\downarrow} > v_{n,2}^{\downarrow} > \dots > v_{n,b}^{\downarrow} > \dots > v_{n,|\mathcal{B}_N^n|}^{\downarrow}, b \in \mathcal{B}_N,$$

So the hard samples can then be defined as:

$$\mathcal{B}_{HC} = \{b_j | v_{p,j}^{\downarrow} \ge v_{p,\varepsilon_v | \mathcal{B}_N^p|}^{\downarrow}\} \cup \{b_j | v_{n,b_j}^{\downarrow} \ge v_{n,\varepsilon_v | \mathcal{B}_N^n|}^{\downarrow}\}$$

Preventing to feed all identified noisy samples to the LLMs for scoring, significantly reduce the computation cost of LLM.

For **C2: Misidentifying of Hard Sample & Noise**, LLMHD introduce a novel Sample Scoring module that leverage LLM to provide auxiliary information for evaluating the sample hardness.



Peintvisis & Sampled & Sacirigg:

Eonside hing of the uparity prefere gative opaths, pettinge differed beth restrictions if can dry to paths the dmegative, hard samples are identified through the indicator functions $y_{u,i} = 1$ $\mathbb{I}_{point}(u, i) = \{1, \dots, if s_{i,i} > \varepsilon_{nen} \text{ and } u_{u,i} = 0$ $\mathbb{I}_{pair}(s_{u,i_p} - s_{u,i_p} > \varepsilon_{pair})^{/\text{ise}},$

Also for achieving the generalization ability And smoothly changing each threshold during the threshold gradually decreases to increase each training radually decreases to increase the hardness by the number of iteration T generalization ability.

$$\varepsilon_{pair} = \max(\varepsilon_{pair}^{max} - \frac{1}{\alpha}T, \varepsilon_{pair}^{min})$$

$$\varepsilon_{neg} = \min(\varepsilon_{neg} + \frac{\alpha}{\alpha}T, \varepsilon_{neg})$$

To address **C3: Biased User Preference Summarization**, LLMHD introduce the Iterative Preference Updating module.

- Specifically, the authors refine user preferences iteratively by excluding dislikes (false-positive) and incorporating likes (false-negative).
- The confident items' selection can then be formularize as:

$$v_{d} = \frac{1}{m} \sum_{j=t-m+1}^{t} \left(\hat{y}_{d}^{j} - \frac{\sum_{j=t-m+1}^{t} \hat{y}_{d}^{j}}{m} \right)^{2} \xrightarrow{\text{positive}} v_{d_{1}^{p}}^{\uparrow} < v_{d_{2}^{p}}^{\uparrow} < \dots < v_{d_{|\mathcal{D}_{pos}|}}^{\uparrow}, d_{k}^{p} \in \mathcal{D}_{pos} \longrightarrow \mathbb{I}_{\text{FP}}(\sum_{j=0}^{t} \mathbb{I}(d_{k}^{p}) \ge \varepsilon_{\gamma})$$

At last, LLMHD can refine the original preference based on identified false-positives and falsenegatives to construct the unbiased user profiles.

$$\mathcal{P}_{u}^{*} = LLM(T_{\mathrm{FP}}(\mathcal{P}_{u}, \mathcal{P}_{i_{\mathrm{fp}}}))$$

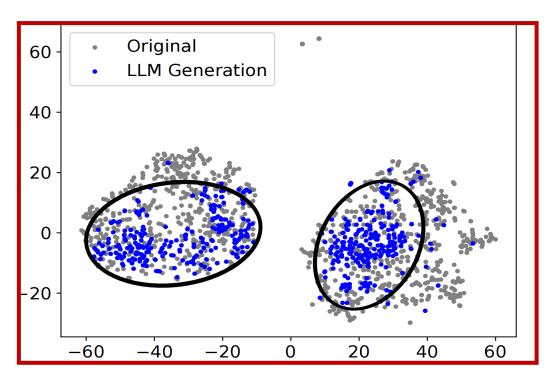
 $\mathcal{P}_{u}^{*} = LLM(T_{\mathrm{FN}}(\mathcal{P}_{u}, \mathcal{P}_{i_{\mathrm{fn}}}))$

Da	taset		Amazo	n-book			Ye	elp			Ste	am	
Backbone	Method	R@5	R@10	N@5	N@10	R@5	R@10	N@5	N@10	R@5	R@10	N@5	N@10
	BCE	0.0353	0.0570	0.0365	0.0438	0.0236	0.0431	0.0283	0.0350	0.0223	0.0405	0.0236	0.0305
	BPR	0.0389	0.0651	0.0406	0.0494	0.0280	0.0495	0.0338	0.0405	0.0381	0.0629	0.0453	0.0525
	T-CE	0.0393	0.0650	0.0402	0.0489	0.0259	0.0450	0.0313	0.0373	0.0257	0.0448	0.0288	0.0354
NGCF	R-CE	0.0366	0.0587	0.0369	0.0444	0.0254	0.0438	0.0302	0.0360	0.0236	0.0435	0.0254	0.0328
NUCL	RGCF	<u>0.0415</u>	0.0658	0.0422	0.0502	0.0287	0.0485	0.0344	0.0406	<u>0.0401</u>	<u>0.0644</u>	0.0472	<u>0.0543</u>
	DCF	0.0398	0.0617	0.0399	0.0472	0.0281	0.0488	<u>0.0353</u>	0.0414	0.0264	0.0446	0.0308	0.0365
	LLMHD _{BCE}	0.0406	0.0668	0.0413	0.0503	0.0276	0.0477	0.0329	0.0386	0.0267	0.0459	0.0297	0.0364
	LLMHD _{BPR}	0.0455	0.0743	0.0455	0.0552	0.0338	0.0579	0.0398	0.0474	0.0418	0.0696	0.0496	0.0579
	BCE	0.0558	0.0849	0.0565	0.0665	0.0390	0.0660	0.0481	0.0557	0.0448	0.0732	0.0529	0.0612
	BPR	0.0587	0.0904	0.0598	0.0704	0.0359	0.0609	0.0446	0.0516	0.0510	0.0828	0.0597	0.0693
	T-CE	0.0590	0.0895	0.0592	0.0697	0.0401	0.0677	0.0504	0.0580	0.0463	0.0758	0.0555	0.0640
LightGCN	R-CE	0.0557	0.0834	0.0566	0.0658	0.0389	0.0650	0.0474	0.0550	0.0461	0.0757	0.0543	0.0630
LightOCN	RGCF	<u>0.0619</u>	<u>0.0956</u>	<u>0.0644</u>	<u>0.0753</u>	<u>0.0420</u>	<u>0.0693</u>	0.0501	0.0579	<u>0.0519</u>	<u>0.0849</u>	<u>0.0599</u>	<u>0.0702</u>
	DCF	0.0590	0.0898	0.0596	0.0701	0.0403	0.0680	0.0503	0.0579	0.0477	0.0778	0.0562	0.0650
	LLMHD _{BCE}	0.0607	0.0921	0.0607	0.0711	0.0408	0.0689	0.0514	0.0589	0.0469	0.0767	0.0563	0.0647
	LLMHD _{BPR}	0.0652	0.0999	0.0655	0.0767	0.0427	0.0731	0.0518	0.0611	0.0536	0.0867	0.0624	0.0722
	BCE	0.0589	0.0902	0.0604	0;.0707	0.0377	0.0655	0.0470	0.0548	0.0433	0.0682	0.0505	0.0676
	BPR	0.0608	0.0956	0.0621	0.0736	0.0373	0.0629	0.0465	0.0538	0.0529	0.0838	0.0613	0.0704
	T-CE	0.0602	0.0909	0.0622	0.0720	0.0408	0.0697	0.0502	0.0587	0.0449	0.0720	0.0532	0.0609
SGL	R-CE	0.0591	0.0901	0.0601	0.0702	0.0386	0.0645	0.0476	0.0550	0.0456	0.0732	0.0538	0.0618
SOL	RGCF	<u>0.0675</u>	0.1049	<u>0.0681</u>	0.0808	<u>0.0416</u>	<u>0.0715</u>	0.0512	0.0606	0.0552	0.0881	0.0639	<u>0.0736</u>
	DCF	0.0626	0.0933	0.0641	0.0740	0.0413	0.0683	0.0506	0.0583	0.0455	0.0727	0.0536	0.0615
	LLMHD _{BCE}	0.0615	0.0931	0.0640	0.0739	0.0414	0.0708	0.0509	0.0596	0.0462	0.0742	0.0543	0.0619
	LLMHD _{BPR}	0.0693	0.1051	0.0717	0.0837	0.0426	0.0718	0.0523	0.0619	<u>0.0546</u>	0.0887	0.0641	0.0739
	BCE	0.0574	0.0871	0.0598	0.0694	0.0391	0.0647	0.0477	0.0548	0.0450	0.0731	0.0529	0.0612
	BPR	0.0605	0.0942	0.0628	0.0740	0.0369	0.0609	0.0451	0.0515	0.0511	0.0835	0.0602	0.0698
	T-CE	0.0599	0.0898	0.0619	0.0719	0.0411	0.0679	0.0507	0.0582	0.0461	0.0751	0.0543	0.0627
NCL	R-CE	0.0585	0.0874	0.0604	0.0696	0.0399	0.0655	0.0487	0.0558	0.0459	0.0750	0.0540	0.0625
NCL	RGCF	<u>0.0694</u>	<u>0.1045</u>	<u>0.0706</u>	<u>0.0819</u>	0.0396	0.0660	0.0480	0.0560	<u>0.0534</u>	0.0863	0.0621	0.0718
	DCF	0.0619	0.0929	0.0624	0.0727	0.0424	0.0696	0.0513	0.0589	0.0465	0.0759	0.0550	0.0635
	LLMHD _{BCE}	0.0609	0.0915	0.0629	0.0730	0.0417	0.0690	0.0517	0.0591	0.0468	0.0762	0.0551	0.0633
	LLMHD _{BPR}	0.0719	0.1053	0.0741	0.0846	0.0432	0.0716	0.0542	0.0620	0.0540	<u>0.0861</u>	0.0624	<u>0.0717</u>

For the experimental results, LLMHD achieves optimal results on three public datasets, validating the effectiveness of proposed methods.

Existing methods in **Tabular data synthesis** often fall short in RS because of the difficulty in understanding the complicated semantic feature relations.

Large Language Models (LLMs) have shown potential in generating synthetic data. However, directly applying LLM to data synthesis still face severe problems:



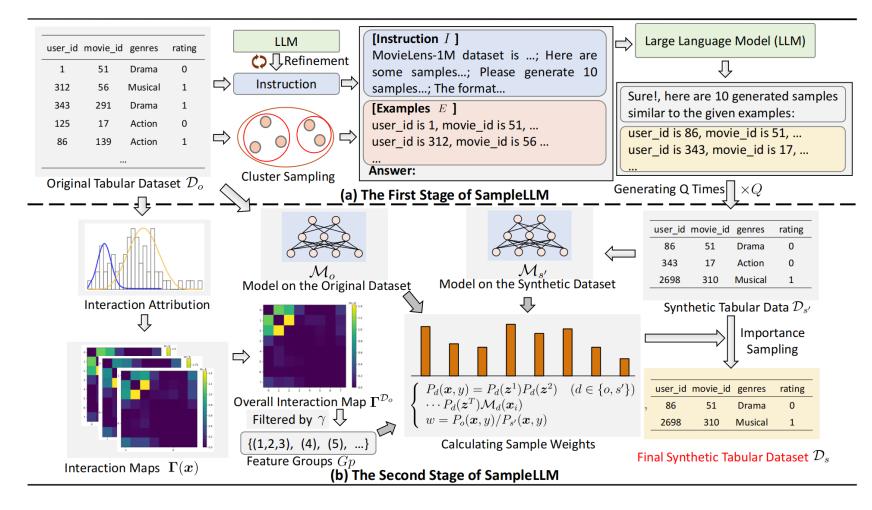
• P1: Inconsistent Distribution & Diversity:

The distribution mismatch between LLM's inherent knowledge and the target datasets can lead to reduced output diversity.

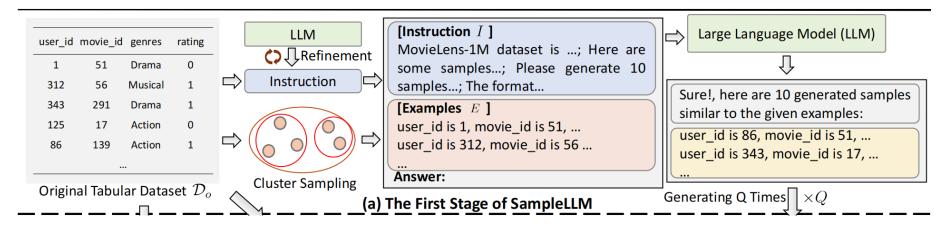
• P2: Distribution Difference Caused by LLM:

Inherent difference caused by LLM's input-output processing still result in a distribution gap.

To address the above problems, the authors propose SampleLLM, a two-stage framework designed to enhance the quality of LLM-based tabular data synthesis in recommendation tasks.



To address **P1: Inconsistent Distribution & Diversity**, in the First Stage, the designed instruction and sampled exemplars from the original dataset are selected to serve as the input for the LLM, producing the initial synthetic tabular data.



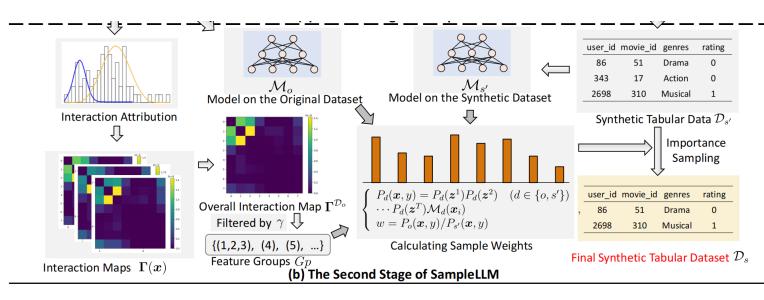
Example Selection

Leveraging K-Means method, SampleLLM can ensures that each group of exemplars contains samples from diverse regions of the original dataset's distribution by only using clusters for LLM's few-shot learning.

The whole approach can be formulized as follows:

$$\begin{cases} Clu = h(\mathcal{D}_{o}, a) = \{clu_{1}, clu_{2}, \dots, clu_{a}\} \\ E = \{x_{i} | x_{i} = g(clu_{i}); i \in \{1, 2, \dots, a\}\} \end{cases}$$

In the second stage, a feature attribution-based importance sampling operation is performed to address 'P2: Distribution Difference Caused by LLM'.



- Feature Attribution-based
 Importance Sampling:
- Current Assumption:

 $P(\boldsymbol{x}_i) = P(x_i^1)P(x_i^2) \dots P(x_i^K)P(y_i \mid x_i^1, x_i^2, \dots, x_i^K)$

- Semi-independence assumption:

$$P(\mathbf{x}_{i}) = P(x_{i}^{1}, x_{i}^{8}) P(x_{i}^{2}) \dots P(x_{i}^{K}) P(y_{i} \mid x_{i}^{1}, x_{i}^{2}, \dots, x_{i}^{K})$$

Still challenging to identify the significance. -> Feature Interaction Extraction

Approximating performance change after setting an informative feature to the non-informative one: $EG_{i}(\mathbf{x}) \coloneqq \mathbb{E}_{\mathbf{x}' \sim \mathcal{D}^{b}} \left[\left(x_{i} - x_{i}^{b} \right) \frac{\delta f(\mathbf{x})}{\delta x_{i}} \right] \longrightarrow \Gamma_{i,j}(\mathbf{x}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}^{b}} \left[\left(x_{i} - x_{i}^{b} \right) \left(x_{j} - x_{j}^{b} \right) \frac{\partial^{2} f\left(\mathbf{x}^{b} \right)}{\partial x_{i} \partial x_{j}} \right]$ 68

In the second stage, a feature attribution-based importance sampling operation is performed to address 'P2: Distribution Difference Caused by LLM'.

Eeaturating Santide Weightion

The import

$$EG_{i}(\mathbf{x}) \coloneqq \mathbb{E}_{\mathbf{x}' \sim \mathcal{D}^{b}} \left[\left(x_{i} - x_{i}^{b} \right) \frac{\delta f(\mathbf{x})}{\delta x_{i}} \right]^{p} \xrightarrow{e \text{ deriv}} \Gamma_{i,j}(\mathbf{x}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}^{b}} \left[\left(x_{i} - x_{i}^{b} \right) \left(x_{j} - x_{j}^{b} \right) \frac{\partial^{2} f\left(\mathbf{x}^{b}\right)}{\partial x_{i} \partial x_{j}} \right]^{a}$$
The su
and ca

$$\begin{cases}
F_{\gamma} = \gamma \cdot max(\Gamma^{\mathcal{D}_{o}}) & \text{tion can highlight the significance in the whole dataset} \\
Pairs = argwhere_{\Gamma^{\mathcal{D}_{o}}}(\Gamma^{\mathcal{D}_{o}} > F_{\gamma}) & \text{ment refine} \\
Gp = Merge(Pairs) & F_{\gamma} = \frac{F_{\gamma}}{2} & F_{\gamma} = \frac{F_{\gamma}}{2} \\
\mathcal{M}(\mathbf{x}_{i}) = P(y_{i} \mid x_{i}^{1}, x_{i}^{2}, \dots, x_{i}^{K}) & F_{\gamma} = \frac{F_{\gamma}}{2} & F_{\gamma} = \frac{F_{\gamma}}{2} \\
\mathcal{M}(\mathbf{x}_{i}) = P(y_{i} \mid x_{i}^{1}, x_{i}^{2}, \dots, x_{i}^{K}) & F_{\gamma} = \frac{F_{\gamma}}{2} \\
\mathcal{M}(\mathbf{x}_{i}) = P(y_{i} \mid x_{i}^{1}, x_{i}^{2}, \dots, x_{i}^{K}) & F_{\gamma} = \frac{F_{\gamma}}{2} \\
\mathcal{M}(\mathbf{x}_{i}) = P(y_{i} \mid x_{i}^{1}, x_{i}^{2}, \dots, x_{i}^{K}) & F_{\gamma} = \frac{F_{\gamma}}{2} \\
\mathcal{M}(\mathbf{x}_{i}) = P(y_{i} \mid x_{i}^{1}, x_{i}^{2}, \dots, x_{i}^{K}) & F_{\gamma} = \frac{F_{\gamma}}{2} \\
\mathcal{M}(\mathbf{x}_{i}) = P(y_{i} \mid x_{i}^{1}, x_{i}^{2}, \dots, x_{i}^{K}) & F_{\gamma} = \frac{F_{\gamma}}{2} \\
\mathcal{M}(\mathbf{x}_{i}) = P(y_{i} \mid x_{i}^{1}, x_{i}^{2}, \dots, x_{i}^{K}) & F_{\gamma} = \frac{F_{\gamma}}{2} \\
\mathcal{M}(\mathbf{x}_{i}) = P(y_{i} \mid x_{i}^{1}, x_{i}^{2}, \dots, x_{i}^{K}) & F_{\gamma} = \frac{F_{\gamma}}{2} \\
\mathcal{M}(\mathbf{x}_{i}) = P(y_{i} \mid x_{i}^{1}, x_{i}^{2}, \dots, x_{i}^{K}) & F_{\gamma} = \frac{F_{\gamma}}{2} \\
\mathcal{M}(\mathbf{x}_{i}) = P(y_{i} \mid x_{i}^{1}, x_{i}^{2}, \dots, x_{i}^{K}) & F_{\gamma} = \frac{F_{\gamma}}{2} \\
\mathcal{M}(\mathbf{x}_{i}) = P(y_{i} \mid x_{i}^{1}, x_{i}^{2}, \dots, x_{i}^{K}) & F_{\gamma} = \frac{F_{\gamma}}{2} \\
\mathcal{M}(\mathbf{x}_{i}) = P(y_{i} \mid x_{i}^{1}, x_{i}^{2}, \dots, x_{i}^{K}) & F_{\gamma} = \frac{F_{\gamma}}{2} \\
\mathcal{M}(\mathbf{x}_{i}) = \frac{F_{\gamma}}{2} \\
\mathcal{M$$

Obtaining Discriminant Probability

Then, the label of each tabular sample can be obtained by training a task-specific model:

$$\mathcal{M}(\boldsymbol{x}_i) = P(y_i \mid x_i^1, x_i^2, \dots, x_i^K)$$

The experimental results have shown that SampleLLM achieves remarkable results on five public datasets, validating the effectiveness of proposed methods.

Theya at soons a find at tees the het ult ly to so fs synthetic glat and prevention of a territory of the synthetic of a participation of the synthetic data into the original data (Augmentation Utility).

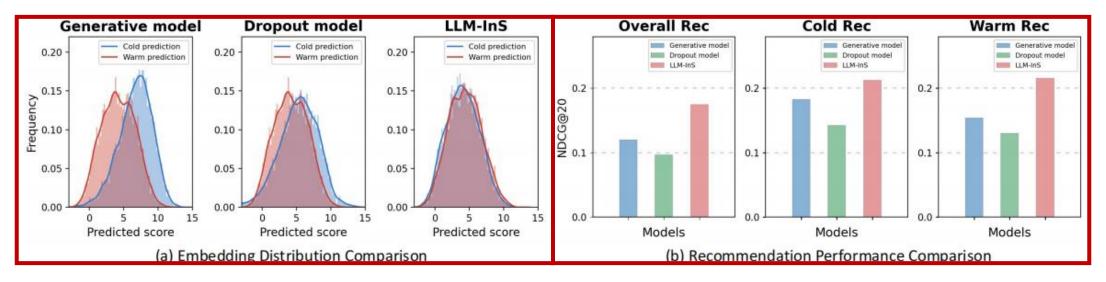
	ML-1M		Amazon		Do	Douban		HELOC		CoverType		
Approach	AUC ↑	Logloss ↓	Precision ↑	Recall ↑	F1 ↑							
Original	0.8173	0.5163	0.7075	0.4602	0.8016	0.5158	0.7638	0.6445	0.7395	0.7339	0.7250	
PATE-GAN	0.8154	0.5153	0.7022	0.4620	0.8010	0.5162	0.7648	0.6461	0.7388	0.7350	0.7258	
ADS-GAN	0.8147	0.5157	0.7026	0.4619	0.8016	0.5151	0.7672	0.6451	0.7414	0.7413	0.7312	
CTGAN	0.8148	0.5156	0.7027	0.4631	0.8016	0.5150	0.7677	0.6419	0.7417	0.7366	0.7295	
TVAE	0.8143	0.5162	0.7031	0.4616	0.8019	0.5146	0.7701	0.6455	0.7422	0.7378	0.7305	
TabDDPM	0.8141	0.5159	0.7036	0.4619	0.8020	0.5150	0.7704	0.6424	0.7418	0.7388	0.7299	
GReaT	0.8153	0.5198	0.7040	0.4616	0.8021	0.5147	0.7703	0.6444	0.7423	0.7440	0.7317	
REaLTabFormer	0.8156	0.5182	0.7041	0.4611	0.8022	0.5145	0.7707	0.6417	0.7428	0.7351	0.7264	
SampleLLM	0.8180*	0.5140*	0.7082*	0.4601*	0.8027*	0.5139*	0.7732*	0.6403*	0.7445*	<u>0.7437</u>	0.7364*	

Aughtentailion Retrifiction Perifer (10% ev(the% synattaetic

Score-based: LLM-Ins

Cold-Start Items are common in pratice and severely affect the performance.

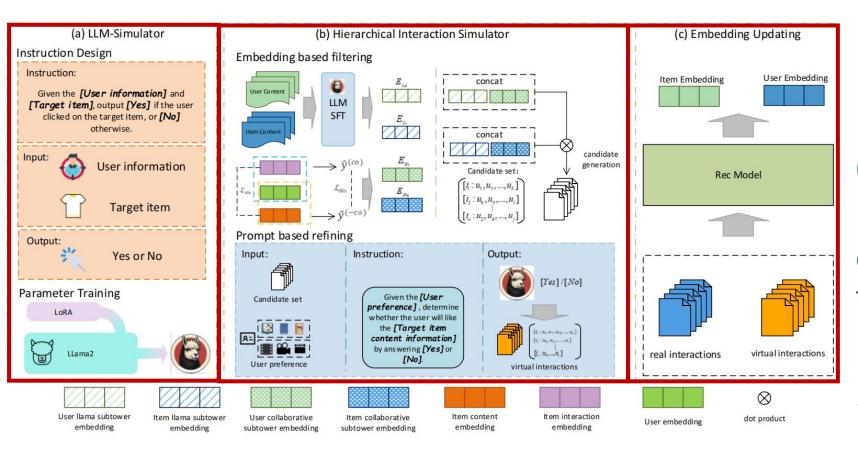
Current Methods adopt **mapping function** to generate fake embedding from cold-start items' content feature, but still face some challenges:



- **C1: Distribution Gap**. The generated embeddings are created from content features, while the behavioral embeddings are trained from sequences.
- C2: LLM's Inadaptability. Applying LLM to interaction generation need further alignment & unify.

Score-based: LLM-Ins

To address the challenges, the authors propose LLM-Ins to model interactions based on content for each cold item (C1) and transform them from cold to warm items (C2).



(a) LLM-Simulator:

Generating possible user set for cold items.

(b) Interaction Simulator:

Mimicing user interactions for each cold item and transform them to warm.

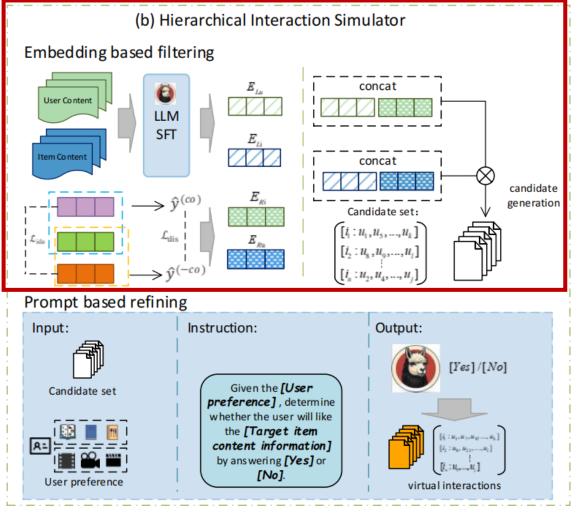
(c) Embedding Updating :

Adaptively combining the cold items and warm items.

We'll then detail the procedure of Hierarchical Interaction Simulator (main procedure).

Score-based: LLM-Ins

We'll detail the procedure of Hierarchical Interaction Simulator (main procedure).



Embedding based filtering :

Ensering Ilaborative Subtovidente selection aligns closely with real world scenarios Wain loss (BPR): Narrowing the gap between (two clidices cenariotic & rociliarborative)

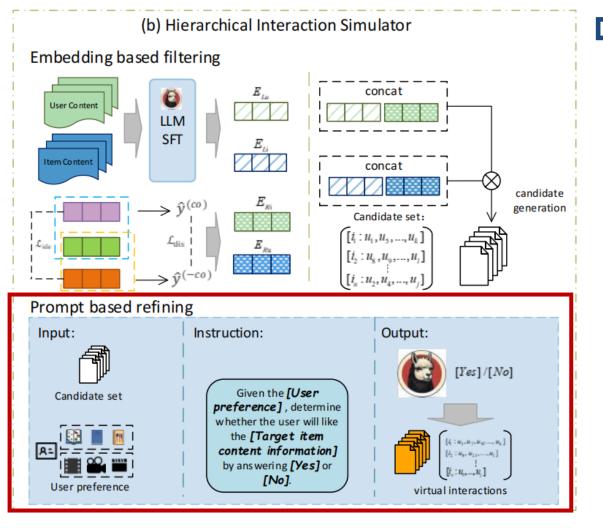
Aukiłary Subossver(dis): Collaborative/noncollaborative side: Featuring With a user tower and a item tower, it $\mathcal{L}_{dis} = \frac{1}{|\mathcal{B}|} \sum_{(u,i,j) \in \mathcal{B}} \left(\left| \widehat{y}_{ui}^{(co)} - \widehat{y}_{ui}^{(-co)} \right|^2 + \left| \widehat{y}_{uj}^{(co)} - \widehat{y}_{uj}^{(-co)} \right|^2 \right),$

Auxillary Loss (ide): Embedding distance side.

$$\mathcal{L}_{bce} = -\frac{1}{\sum_{i \in \mathcal{B}_{I}}} \sum_{\substack{n \dots i \log(\hat{n} \dots i) + (1 - n \dots i) \log(1 - \hat{n} \dots i) \\ \vec{\mathcal{L}}_{ide}} = -\sum_{i \in \mathcal{B}_{I}} (\overline{d}_{i}^{(co)} \ln \overline{d}_{i}^{(-co)} + (1 - \overline{d}_{i}^{(co)}) \ln(1 - \overline{d}_{i}^{(-co)})),$$
$$\overline{d}_{i}^{(co)} = \sigma (\boldsymbol{e}_{i}^{\top} \cdot (\boldsymbol{e}_{i} - \frac{1}{|\mathcal{B}|} \sum_{j \in \mathcal{B}_{I}} \boldsymbol{e}_{j})),$$

Score-based: LLM-Ins

We'll detail the procedure of Hierarchical Interaction Simulator (main procedure).



Prompt based refining :

The authors concat these two embeddings from Llama Tower and Collaborative Tower:

 $E_{LTi} = E_{Li} || E_{Ci}, \quad E_{LTu} = E_{Lu} || E_{Cu}.$ LLM to further refine the generated interactions to filter the low-quality interactions:

prompt =
$$\mathcal{G}_{u,i}(\mathcal{H}_u, \mathcal{I}_t | \mathcal{I}_t \in \mathcal{I}_c),$$

$$C_f = L_t(prompt|A_{ns} = yes),$$

Score-based: LLM-Ins

CiteULike

Task

LLM

For the experimental results, LLM-Ins achieves optimal results under three backbone MF, NGCF, LightGCN and presents remarkable performance in comparison with other LLM-based Recommendation model:

		Ov	erall Reco	mmendat	ion	C	old Recon	nmendatio	on	Warm Recommendation			
	Method	Citel	JLike	Movi	eLens	CiteULike		MovieLens		CiteULike		MovieLens	
		Recall	NDCG	Recall	NDCG	Recall	NDCG	Recall	NDCG	Recall	NDCG	Recall	NDCG
	Backbone	0.0812	0.0622	0.1418	0.2330	0.0041	0.0019	0.0177	0.0190	0.2528	0.1541	0.3130	0.3008
	DropoutNet	0.0883	0.0639	0.1165	0.1978	0.2309	0.1312	0.0340	0.0373	0.1175	0.0692	0.2560	0.2518
	MTPR	0.1001	0.0753	0.1011	.0.1551	0.2585	0.1454	0.0779	0.0802	0.1753	0.0697	0.2247	0.2009
7	CLCRec	0.1293	0.0965	0.1253	0.2037	0.2435	0.1425	0.0677	0.0816	0.2149	0.1302	0.2764	0.2612
LightGCN	DeepMusic	0.0985	0.0745	0.1418	0.2330	0.2239	0.1259	0.0635	0.0719	0.2528	0.1541	0.3130	0.3008
ght	MetaEmb	0.0924	0.0714	0.1418	0.2330	0.2252	0.1295	0.0248	0.0244	0.2528	0.1541	0.3130	0.3008
Lig	GPatch	0.1609	0.1197	0.1293	0.2106	0.2606	0.1532	0.0771	0.0760	0.2528	0.1541	0.3130	0.3008
	GAR	0.1357	0.1062	0.0106	0.0195	0.2539	0.1489	0.0110	0.0130	0.2339	0.1455	0.2873	0.2794
	UCC	0.1374	0.1260	0.1277	0.2020	0.0020	0.0011	0.0063	0.0073	0.3002	0.2010	0.2830	0.2641
	ALDI	0.1626	0.1201	<u>0.1428</u>	0.2316	0.2692	<u>0.1539</u>	0.1229	0.1295	0.2528	0.1541	<u>0.3130</u>	<u>0.3008</u>
	LLM-InS	0.2285	0.1747	0.1506	0.2468	0.3601	0.2126	0.1759	0.1762	0.3252	0.2156	0.3314	0.3186
	%Improv.	40.52%	38.65%	5.46%	5.92%	33.76%	38.14%	43.12%	36.06%	8.33%	7.26%	5.97%	5.92%

TUSK		Recall	NDCG	Recall	NDCG
	ChatGPT	0.2054	0.1641	0.1396	0.2267
	TALLRec	0.2141	0.1661	0.1428	0.2324
Overall	LLMRec	0.1983	0.1535	0.1372	0.2257
	LLM-InS	0.2285	0.1747	0.1461	0.2368
	%Improv.	6.73%	5.18%	2.31%	1.90%
	ChatGPT	0.3477	0.2079	0.1480	0.1556
	TALLRec	0.3352	0.1990	0.1374	0.1379
Cold	LLMRec	0.3453	0.2076	0.1425	0.1508
	LLM-InS	0.3601	0.2126	0.1563	0.1566
	%Improv.	3.57%	2.27%	5.61%	0.64%
	ChatGPT	0.3001	0.1933	0.3074	0.2921
	TALLRec	0.3102	0.2037	0.3172	0.3016
Warm	LLMRec	0.2613	0.1645	0.3022	0.2902
	LLM-InS	0.3252	0.2156	0.3217	0.3060
	%Improv.	4.84%	5.84%	1.42%	1.46%

Experiment results when backbone = LightGCN

Comparison Experiment

MovieLens

Sequential recommendation systems (SRS) are often contaminated by noisy interactions.

Large Language Models (LLMs) has merged as a potential avenue to alleviate the noisy data. However, directly apply LLM to denoising task faces some challenges:

You are to analyze a list of item titles provided by a user. Your task is to identify any item(s) that do not align with the main interests reflected by the majority of the items. After identifying these noise items, suggest alternative items that better match the user's interests.

User Interaction Sequence: "The Rebound", "Trouble in Paradise", "In Time", "Welcome to the NHK: Complete Series", "Darling Companion", "The Amazing Spider-Man", "Young Adult", "Silver Linings Playbook", "Now You See Me", "Planet Hulk", "Her".

The user's interests are in movies and TV shows. The user's interests are not in books. The user's interests are not in comics. The user's interests are not in video games. The user's interests are not in music. The user's interests are not in anime. The user's interests are not in manga. The user's interests are not in webcomics. The user's interests are not in podcasts...

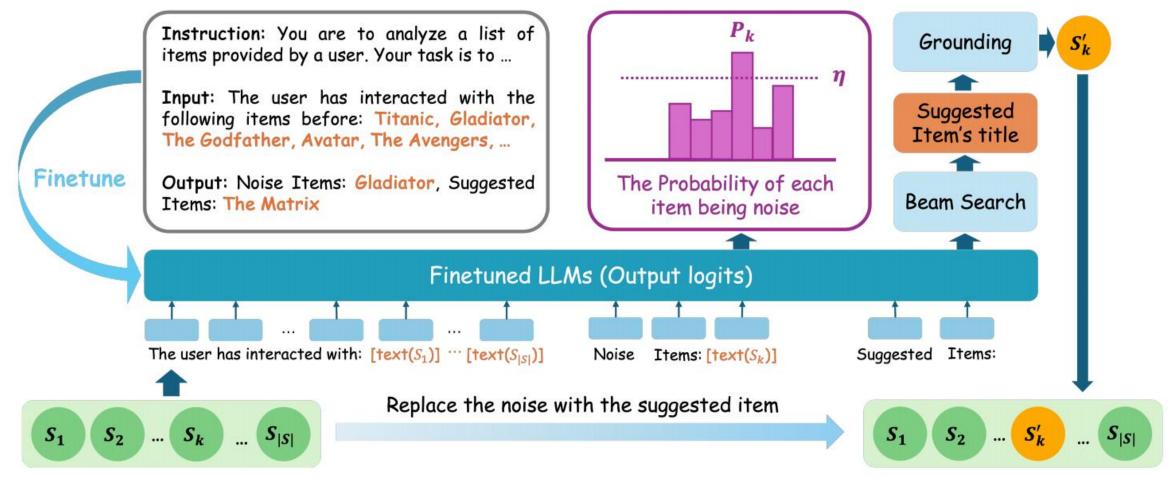
• **C1**: Inadaptability of LLM:

Direct application of pretrained LLMs may not be competent for the denoising task.

C2: Hallucination of LLM:
 The reliability of LLM's outputs remains questionable.

Wang, Bohao, et al. "Llm4dsr: Leveraing large language model for denoising sequential recommendation." arXiv preprint arXiv:2408.08208 (2024).

To address the above challenges, the authors proposed LLM4DSR, featuring with self-supervised fine-tuning method and an uncertainty estimation mechanism to fully exploit the capabilities of LLMs.



Specifically, for **C1: Inadaptability of LLM**, LLM4DSR constructed a new dataset and leveraged SFT to empower LLMs with denoising ability by using a "find & replace" task.

Prompt for Self-Supervised Task

Instruction: You are to analyze a list of items provided by a user. Your task is to identify an item that do not align with the main interests reflected by the majority of the items. After identifying these noise items, suggest alternative items that better match the user's interests.

Input: The user has interacted with the following items before: $text(s_1), \dots, text(\hat{s_t}), \dots, text(\hat{s_{|S|}})$

Output: Noise Items: $text(\hat{s_t})$, Suggested Items: $text(s_t)$

Training Objective:

By prompting the LLM using left instruction example, the authors construct a new binary prediction dataset and formulize the training objective as follows:

$$\max_{\Theta} \sum_{(x,z)} \sum_{i=1}^{|z|} \log \left(P_{\Phi} \left(z_i \mid x, z_{< i} \right) \right)$$

However, there is still one limitation that current LLM-based denoiser can only address a single noise item per sequence. (L1: Inadaptability for Multi-noise Scenario)

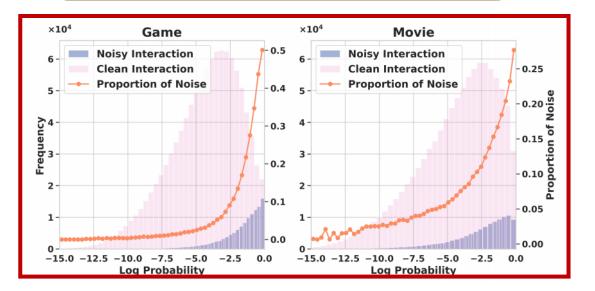
To address L1: Inadaptability for Multi-noise Scenario & C2: Hallucination of LLM, the Uncertainty Estimation module is introduced.

Prompt for Self-Supervised Task

Instruction: You are to analyze a list of items provided by a user. Your task is to identify an item that do not align with the main interests reflected by the majority of the items. After identifying these noise items, suggest alternative items that better match the user's interests.

Input: The user has interacted with the following items before: $text(s_1), \dots, text(\hat{s_t}), \dots, text(\hat{s_{|S|}})$

Output: Noise Items: $text(\hat{s_t})$, Suggested Items: $text(s_t)$



Uncertainty Estimation:

Regarding the LLM provided probability after text "Noise Items:" as LLM's confidence, the probability values of all noisy items in the sequence can be obtained by the formula below:

$$P_{\text{noise}}(s_i|S) = \prod_{j=1}^{|T_i|} P(T_{i,j}|x, z_{\text{noise}}, T_{i,
= $P(T_{i,1}|x, z_{\text{noise}})P(T_{i,2}, \cdots, T_{i,|T_i|}|x, z_{\text{noise}}, T_{i,1})$
= $P(T_{i,1}|x, z_{\text{noise}})$$$

For the experimental results, LLM4DSR achieves optimal results on three raw public datasets and noise-added datasets, validating the effectiveness of proposed methods.

Backbone	Method		Games				Тоу			Movie			
Duchoonie		NDCG@20	NDCG@50	HR@20	HR@50	NDCG@20	NDCG@50	HR@20	HR@50	NDCG@20	NDCG@50	HR@20	HR@50
	None	0.0252	0.0314	0.0526	0.0838	0.0139	0.0178	0.0348	0.0542	0.0390	0.0455	0.0750	0.1084
SASRec	FMLP CL4SRec	0.0253 0.0278	$\frac{0.0315}{0.0336}$	0.0508 <u>0.0556</u>	$0.0824 \\ 0.0864$	0.0138 <u>0.0151</u>	0.0173 0.0183	0.0365 0.0394	0.0547 0.0557	$\frac{0.0415}{0.0405}$	$\frac{0.0484}{0.0464}$	$\frac{0.0772}{0.0770}$	$\frac{0.1120}{0.1070}$
	HSD STEAM	0.0198 0.0261	0.0250 0.0333	0.0412 0.0532	0.0678 <u>0.0900</u>	0.0090 0.0123	0.0127 0.0161	0.0254 0.0321	0.0444 0.0513	0.0340 0.0401	$0.0407 \\ 0.0476$	0.0700 0.0740	$0.1042 \\ 0.1118$
	LLM4DSR	0.0292	0.0357	0.0624	0.0956	0.0152	0.0200	0.0401	0.0642	0.0431	0.0517	0.0876	0.1314
	None	0.0266	0.0335	0.0534	0.0880	0.0150	0.0195	0.0346	0.0574	0.0485	0.0569	0.0826	0.1258
BERT4Rec	FMLP CL4SRec	0.0281 0.0268	0.0353 0.0341	0.0598 0.0538	0.0962 0.0906	0.0147 0.0153	0.0188 0.0196	0.0330 0.0369	0.0536 <u>0.0586</u>	0.0478 0.0498	0.0561 <u>0.0579</u>	$\frac{0.0818}{0.0864}$	$\begin{array}{c} 0.1240 \\ \underline{0.1276} \end{array}$
	HSD STEAM	0.0288 0.0294	$\frac{0.0361}{0.0367}$	$\frac{0.0600}{0.0562}$	$\frac{0.0970}{0.0936}$	0.0152 0.0182	$\frac{0.0189}{0.0218}$	0.0340 0.0388	0.0530 0.0572	0.0390 0.0472	$0.0459 \\ 0.0544$	0.0682 0.0836	$0.1032 \\ 0.1202$
	LLM4DSR	0.0316	0.0397	0.0644	0.1056	0.0183	0.0231	0.0401	0.0645	0.0509	0.0591	0.0890	0.1306
	None	0.0128	0.0172	0.0260	0.0484	0.0085	0.0108	0.0188	0.0305	0.0117	0.0136	0.0198	0.0294
LLaRA	HSD STEAM	$\frac{0.0141}{0.0108}$	$\frac{0.0184}{0.0146}$	$\frac{0.0274}{0.0224}$	$\frac{0.0488}{0.0416}$	$\frac{0.0109}{0.0092}$	$\frac{0.0141}{0.0120}$	$\frac{0.0240}{0.0202}$	$\frac{0.0403}{0.0348}$	0.0111 0.0107	0.0132 0.0127	0.0186 0.0182	0.0294 0.0286
	LLM4DSR	0.0150	0.0193	0.0286	0.0504	0.0121	0.0162	0.0280	0.0482	0.0159	0.0186	0.0250	0.0390

Performance configuration on the Reeval detect et at a sets

August 3-7, 2025 KDD2+25 CityU

Recent Studies have shown the rich semantic information can benefit the multi-interest modeling in Sequential Recommendation Systems (SRS).

However, there are still some problems when leveraging the semantic information to model user's behavioral information.

• P1: Demand Conflict

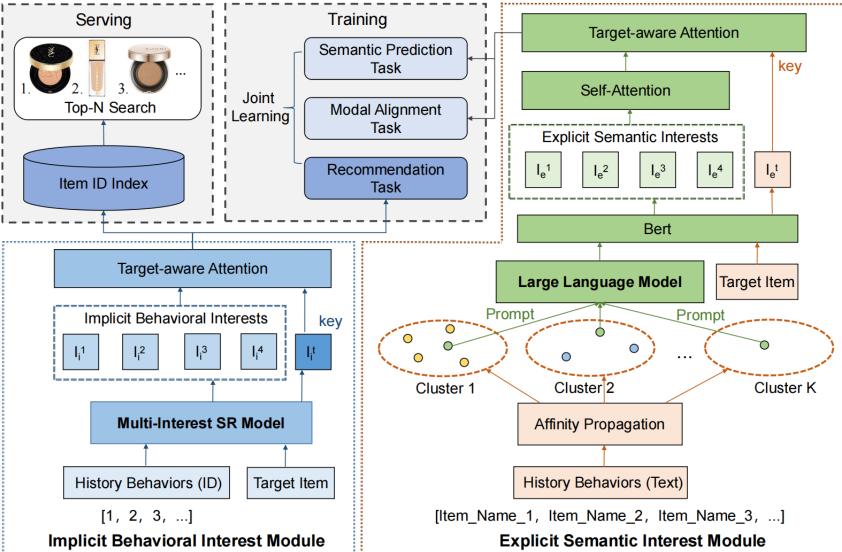
Traditional SRS has high real-time requirements while the fine-tuning and inference of LLM requires a lot of time and computing resources, leading to the demand conflict.

• P2: Misunderstanding of User's Real Interests

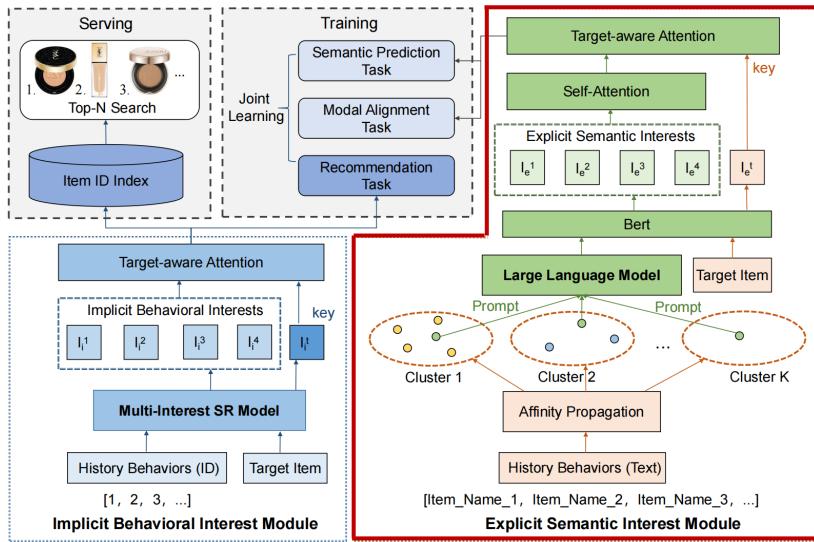
The semantic information from user/item content has significant gap with the behavioral information from well-trained recommendation model, leading to misunderstanding of user's real interests.

Qiao, Shutong, et al. "LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation." arXiv preprint arXiv:2411.09410 (2024).

To address the above problems, the authors propose EIMF to adaptively combine traditional model with LLM.



Specifically, to address the '**P1**: **Demand Conflict**', EIMF introduces **Explicit Behavioral Interest** to fully explore the LLM's capability while reducing the inference cost.



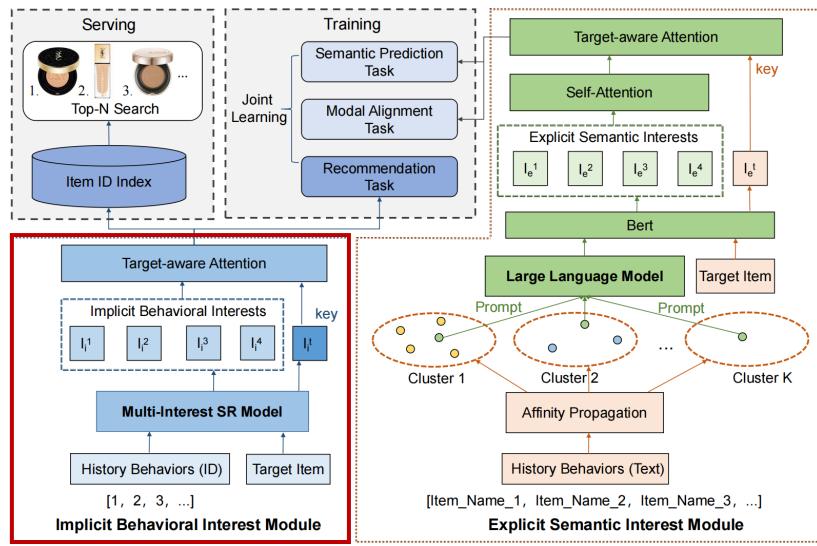
Affinity Propagation & LLM Summarization:

EIMF dividse users into groups and utilize LLM as summarizer to reduce the inference cost.

Interest Embedding

EIMF queries the semantic interest embedding by utilizing the target item as key, which can be used for alignment and semantic prediction.⁸³

To address the 'P2: Misunderstanding of User's Real Interests', EIMF combines the Behavioral Interest with the Semantic Interest by jointly learning three kinds of tasks.

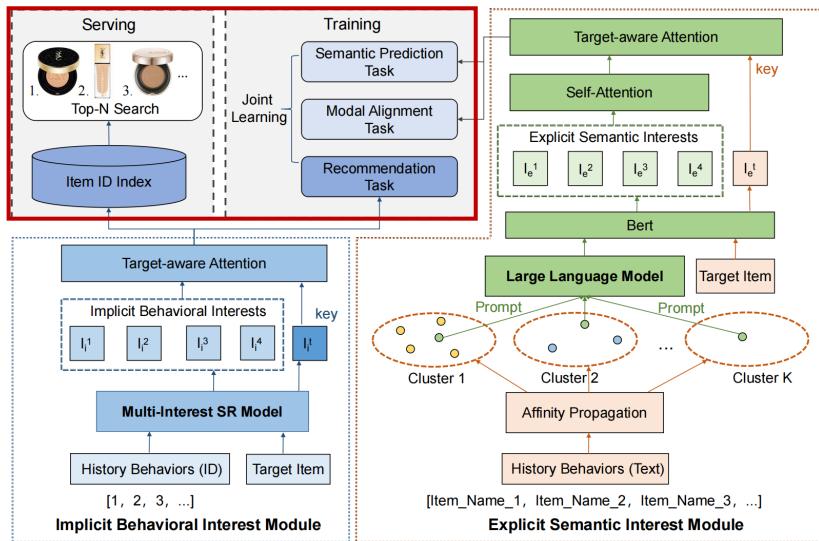


D Behavioral Interest:

Firstly, EIMF obtains the implicit behavioral interest by a SR model.

Then using similar Targetaware Attention network to acquire the behavioral embeddings to construct the loss.

To address the 'P2: Misunderstanding of User's Real Interests', EIMF combines the Behavioral Interest with the Semantic Interest by jointly learning three kinds of tasks.



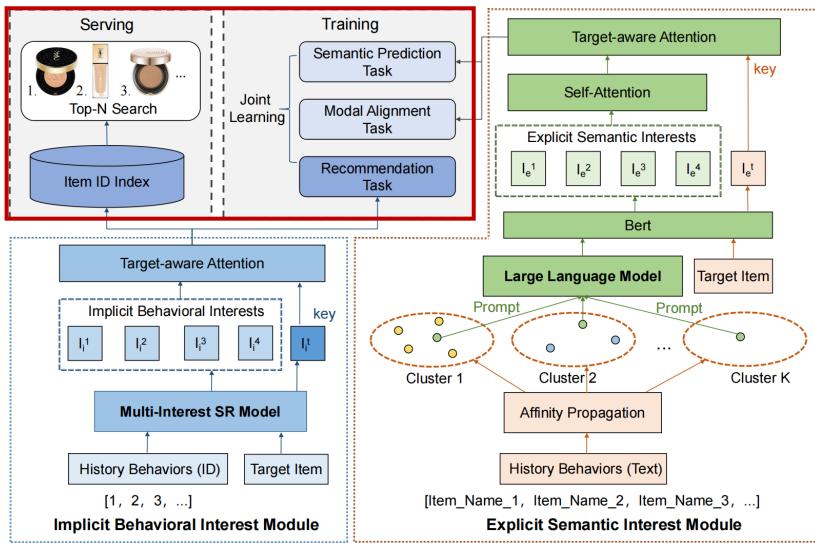
Joint Learning:

- Semantic Prediction Task

Calculating the score between user's semantic interest and item text:

$$\mathcal{L}_{\mathrm{S}} = \sum_{k=1}^{n} y_t^k \log(\hat{y_t^k})$$

To address the 'P2: Misunderstanding of User's Real Interests', EIMF combines the Behavioral Interest with the Semantic Interest by jointly learning three kinds of tasks.



Joint Learning:

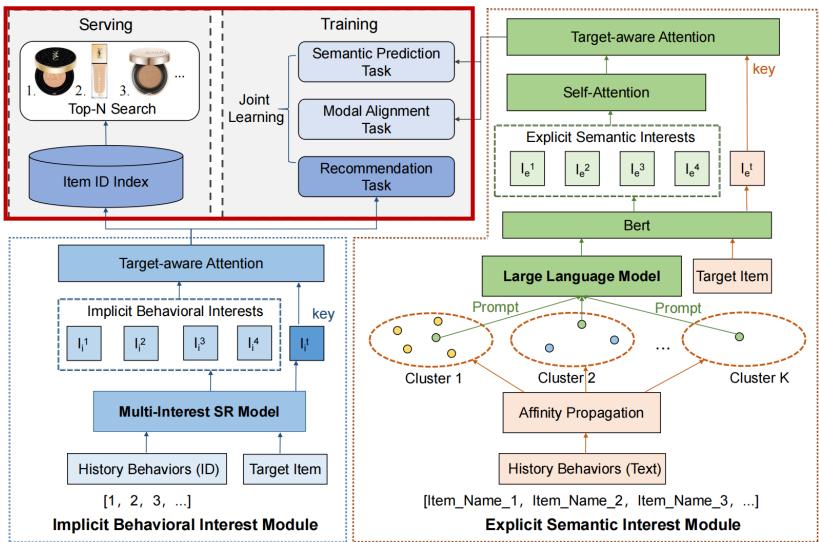
- Modal Alignment Task

Building the contrastive loss to align the semantic embedding and behavioral embedding as:

$$\begin{split} \mathrm{CL}(e_a,e_b) &= -\frac{1}{N}\sum_{k=1}^N log \Bigg(\frac{\exp(\mathrm{Sim}(e_a^k,e_b^k)/\tau)}{\sum_{j=1}^N \exp(\mathrm{Sim}(e_a^k,e_b^j)/\tau)} \Bigg),\\ \mathrm{Cos}(e_a,e_b) &= \frac{1}{N}\sum_{k=1}^N \Big(1-\mathrm{Sim}(e_a^k,e_b^k)\Big), \end{split}$$

 $\mathcal{L}_{A} = \alpha(\mathrm{CL}(h_{\mathrm{ex}}, h_{\mathrm{im}}) + \mathrm{CL}(e_{\mathrm{t}}^{T}, e_{\mathrm{i}}^{T})) + \beta(\mathrm{Cos}(h_{\mathrm{ex}}, h_{\mathrm{im}}) + \mathrm{Cos}(e_{\mathrm{t}}^{T}, e_{\mathrm{i}}^{T}))$

To address the '**P2: Misunderstanding of User's Real Interests**', EIMF combines the Behavioral Interest with the Semantic Interest by jointly learning three kinds of tasks.



D Joint Learning:

- Recommendation Task

$$\hat{y_i^k} = \operatorname{softmax}(h_{\text{ex}}^{\top} e_i^k)$$

$$\mathcal{L}_R = \sum_{k=1} y_i^k \log(\hat{y_i^k})$$

Finally, the whole loss can be formulized as:

 $\mathcal{L} = \mathcal{L}_R + \gamma \left(\mathcal{L}_S + \mathcal{L}_A \right)$

The experimental results show that EIMF achieves remarkable results on three public datasets (two large and one small), presenting that EIMF's superiority.

Dataset	Model	Pop	DNN	GRU4Rec	SASRec	Bert4Rec	LLM2Bert4Rec	MIND	ComiRec-SA	REMI	EIMF(REMI)	Improv.(%)
	Recall@20	0.0729	0.1252	0.1387	0.1536	0.1544	0.1259	0.1445	0.1122	0.1617	0.1758	+8.71
	Recall@50	0.1305	0.2044	0.2300	0.2508	0.2372	0.2080	0.2162	0.2076	0.2574	0.2704	+5.05
Cracorre	NDCG@20	0.0448	0.0804	0.0905	0.1041	0.1074	0.0793	0.0844	0.0706	0.0953	0.1025	-4.56
Grocery	NDCG@50	0.0624	0.0969	0.1097	0.1139	0.1130	0.0954	0.0967	0.0918	0.1108	0.1181	+3.69
	HR@20	0.1252	0.2076	0.2321	0.2586	0.2614	0.2164	0.2328	0.1851	0.2539	0.2750	+6.34
	HR@50	0.2137	0.3227	0.3649	0.3750	0.3608	0.3294	0.3322	0.3220	0.3832	0.3955	+3.21
	Recall@20	0.0452	0.1613	0.1388	0.1495	0.1430	0.1383	0.1563	0.1582	0.2189	0.2323	+6.12
	Recall@50	0.0660	0.2361	0.2109	0.2220	0.2050	0.2053	0.2384	0.2594	0.3420	0.3636	+6.31
Poontre	NDCG@20	0.0213	0.0886	0.0798	0.0854	0.0846	0.0788	0.0787	0.0854	0.1139	0.1204	+5.71
Beauty	NDCG@50	0.0270	0.0932	0.0844	0.0879	0.0852	0.0823	0.0900	0.1004	0.1304	0.1348	+3.37
	HR@20	0.0675	0.2401	0.2141	0.2320	0.2221	0.2181	0.2203	0.2325	<u>0.3111</u>	0.3268	+5.04
	HR@50	0.0966	0.3299	0.2982	0.3129	0.2986	0.2919	0.3272	0.3545	<u>0.4532</u>	0.4802	+5.95

Performance comparison on two large datasets

Model	Recall@20	NDCG@20	HR@20	Recall@50	NDCG@50	HR@50
GRU4Rec	0.0800	0.0537	0.1384	0.1770	0.0809	0.2811
SASRec	<u>0.1152</u>	0.0643	0.1792	0.1963	0.0805	0.2871
Bert4Rec	0.1037	0.0635	0.1812	0.1920	0.0834	0.3116
MIND	0.0915	0.0513	0.1466	0.1593	0.0706	0.2505
ComiRec-SA	0.0788	0.0456	0.1202	0.1589	0.0653	0.2321
REMI	0.1072	0.0637	0.1751	0.2018	0.0825	0.2973
LLM2Bert4Rec	0.1085	0.0660	0.1812	0.2117	<u>0.0939</u>	0.3360
EIMF(REMI)	0.1222	0.0649	0.1772	0.2296	0.0930	0.3503
Improv.(%)	+6.08	-1.66	-2.20	+8.45	-0.95	+4.25

Performance comparison on one small dataset

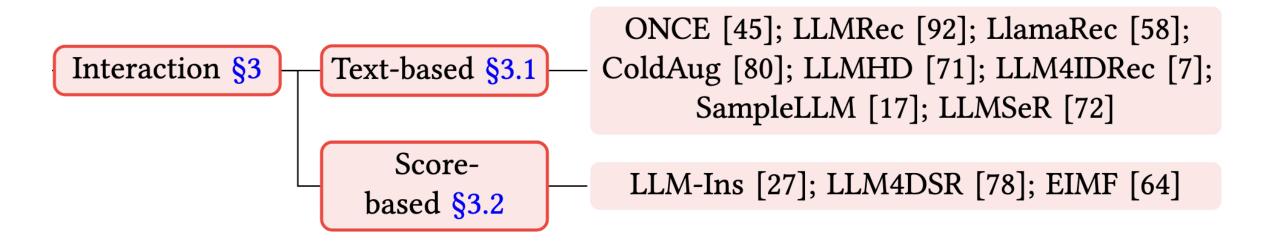
Moreover, the experiment performing on different backbones shows a significant improvement, further validating the effectiveness of proposed modules in EIMF.

Dataset		Beauty			Office	
Model	Recall@50	NDCG@50	HR@50	Recall@50	NDCG@50	HR@50
Bert4Rec	0.2050	0.0852	0.2986	0.1920	0.0834	0.3116
EIMF(Bert4Rec)	0.2155	0.0854	0.3071	0.2101	0.0909	0.3380
Improv.(%)	+5.12	+0.23	+2.84	+9.42	+8.99	+8.47
SASRec	0.2220	0.0879	0.3129	0.1964	0.0806	0.2872
EIMF(SASRec)	0.2499	0.0999	0.3469	0.2088	0.0878	0.3198
Improv.(%)	+12.56	+13.65	+10.86	+6.31	+8.93	+11.35
MIND	0.2384	0.0900	0.3272	0.1594	0.0707	0.2505
EIMF(MIND)	0.2518	0.0968	0.3424	0.2023	0.0793	0.2953
Improv.(%)	+5.62	+7.55	+4.64	+26.91	+12.16	+17.88

Performance comparison on different backbones

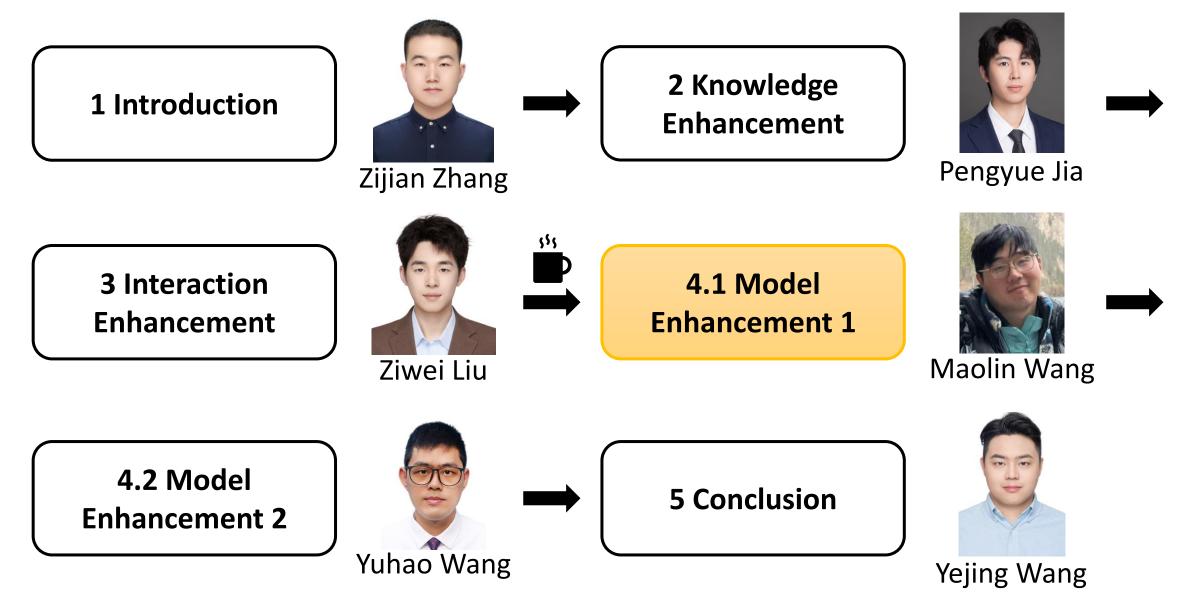
Summary

Here, we give an overview of the works on interaction enhancement for LLM Enhanced Sequential Recommendation (LLMESR).



- **Text-based**: This kind of methods leverage LLM to give out the names of pseudo-interacted items in the user-item sequence as the augmentation.
- Score-based: The score-based methods utilize LLM to derive the logits of the possible interactions and generate the augmented items by ranking.

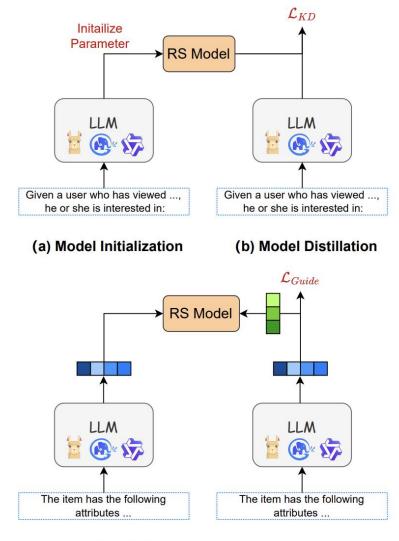
Agenda



Model Enhancement

August 3-7, 2025 KDD2+25 CityU

- LLMs possess powerful semantic capabilities that can be directly integrated into recommendation systems to enhance models.
- Categories
 - Model Initialization
 - Model Distillation
 - Embedding Utilization
 - Embedding Guidance

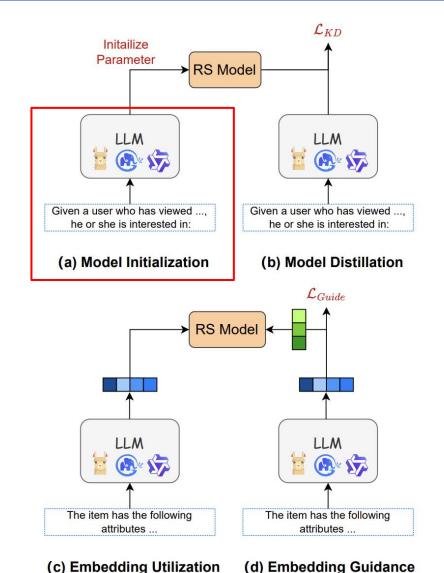


(c) Embedding Utilization

(d) Embedding Guidance

Model Initialization

- This subcategory refers to utilizing LLMderived semantics to initialize the weights of recommendation models before training begins.
- This approach accelerates model convergence while preserving semantic knowledge from LLM pretraining for downstream recommendation tasks.
- Categories
 - Whole
 - Embedding



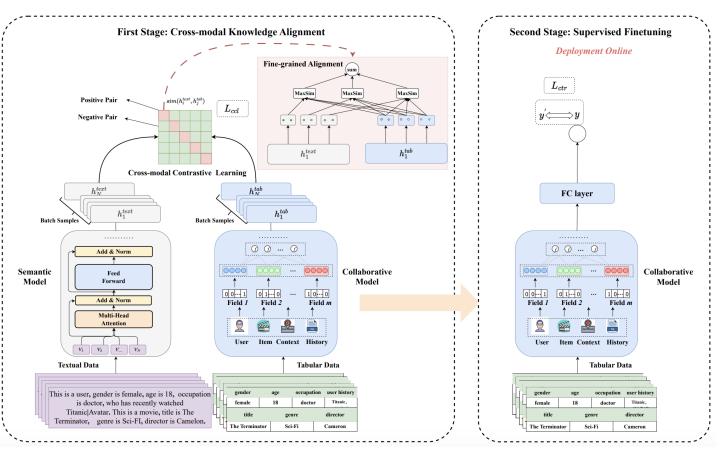
• Background

- CTR prediction is a core task in recommender systems, where traditional collaborative models capture user preferences through feature co-occurrence.
- Motivation
 - One-hot encoding discards semantic relationships, leading to poor performance in cold-start scenarios.
 - Direct use of Pre-trained Language Models is computationally expensive and fails to meet low-latency requirements for online inference.
- Key Stages
 - Cross-modal Knowledge Alignment
 - Supervised Fine-tuning

Li, Xiangyang, et al. "Ctrl: Connect collaborative and language model for ctr prediction." ACM Transactions on Recommender Systems (2023).

Whole - CTRL

- CTRL proposes a two-stage framework to effectively integrate semantic knowledge into collaborative.
- Cross-modal Knowledge Alignment
 - Tabular data feeds collaborative model, text prompts feed PLM. Contrastive learning aligns representations to distill semantic knowledge.
- Supervised Fine-tuning
 - Enhanced collaborative model fine-tunes on CTR task. Only lightweight collaborative model deploys online, no PLM needed.



Whole - CTRL

August 3-7, 2025 KDD2+25 CityU

• CTRL significantly outperforms SOTA collaborative and semantic models on multiple public datasets and an industrial system, while maintaining high inference efficiency.

Category	Model		MovieLe	ns		Amazor	1		Alibaba		
Cutegory	1110401	AUC	Logloss	RelaImpr	AUC	Logloss	RelaImpr	AUC	Logloss	RelaImpr	
	Wide&Deep	0.8261	0.4248	3.52%	0.6968	0.4645	5.30%	0.6272	0.1943	5.19%	
	DeepFM	0.8268	0.4219	3.30%	0.6969	0.4645	5.33%	0.6280	0.1951	4.53%	
	DCN	0.8313	0.4165	1.90%	0.6999	0.4642	3.75%	0.6281	0.1949	4.45%	
Collaborative Models	PNN	0.8269	0.4220	3.27%	0.6979	0.4657	4.80%	0.6271	0.1956	5.27%	
	AutoInt	0.8290	0.4178	2.61%	0.7012	0.4632	3.08%	0.6279	0.1948	4.61%	
	FiBiNet	0.8196	0.4188	5.63%	0.7003	0.4704	3.54%	0.6270	0.1951	5.35%	
	xDeepFM	0.8296	0.4178	2.43%	0.7009	0.4642	3.23%	0.6272	0.1959	5.19%	
	P5	0.7583	0.4912	30.70%	0.6923	0.4608	7.85%	0.6034	0.3592	29.40%	
Semantic Models	CTR-BERT	0.7650	0.4944	27.40%	0.6934	0.4629	7.24%	0.6005	0.3620	33.13%	
	P-Tab	0.8031	0.4612	11.38%	0.6942	0.4625	6.80%	0.6112	0.3584	20.32%	
CTRL		0.8376*	0.4025*	-	0.7074*	0.4577*	-	0.6338*	0.1890*	-	

 Practical Values: CTRL achieves superior performance by fusing collaborative and semantic signals, maintains efficient inference, and is industrial-friendly with flexible model compatibility.

Whole - FLIP

- Background
 - CTR prediction is a core task in recommender systems, where traditional ID-based models use one-hot encoding and PLMs use textual modality.
- Motivation
 - One-hot encoding discards semantic information, leading to poor performance in sparse scenarios.
 PLMs struggle with field-wise collaborative signals and have high computational costs for online inference.
- Key Components
 - Modality Transformation
 - Modality Alignment Pretraining
 - Adaptive Finetuning

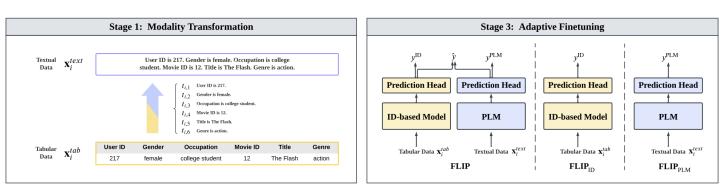
Whole - FLIP

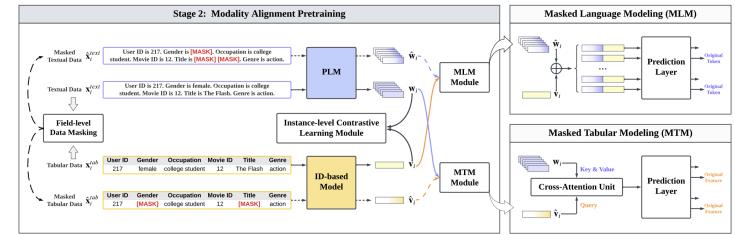
Modality Transformation

- Convert tabular features to textual sentences using simple templates, preserving semantic information in natural language format.
- Modality Alignment Pretraining
 - Field-level masking with MLM, MTM, and ICL for fine-grained cross-modal alignment.

• Adaptive Finetuning

 Joint training with learnable weight α combining both model outputs for CTR prediction.





• **FLIP** significantly outperforms SOTA on three public datasets. It also shows strong compatibility with various ID models and PLMs.

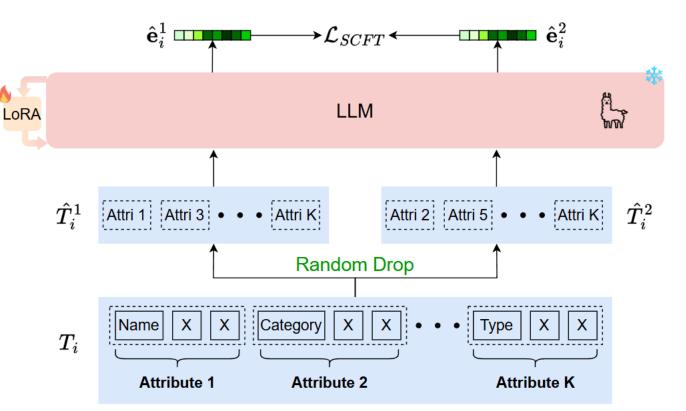
		N	lovieLens-1	IM	F	BookCrossi	ng	GoodReads			
1	Model	AUC	Logloss	Rel.Impr	AUC	Logloss	Rel.Impr	AUC	Logloss	Rel.Imp	
	AFM	0.8449	0.3950	1.79%	0.7946	0.5116	1.06%	0.7630	0.5160	1.96%	
	PNN	0.8546	0.3946	0.63%	0.7956	0.5131	0.93%	<u>0.7725</u>	0.5055	0.70%	
	Wide&Deep	0.8509	0.3957	1.07%	0.7951	0.5116	1.00%	0.7684	0.5090	1.24%	
	DCN	0.8509	0.4056	1.07%	<u>0.7957</u>	0.5108	0.92%	0.7693	0.5086	1.12%	
ID-based	DeepFM	0.8539	0.3905	0.71%	0.7947	0.5122	1.04%	0.7671	0.5138	1.41%	
ID-based	xDeepFM	0.8454	0.3934	1.72%	0.7953	0.5108	0.97%	0.7720	0.5079	0.77%	
	AFN	0.8525	0.3868	0.88%	0.7932	0.5139	1.24%	0.7654	0.5118	1.64%	
	AutoInt	0.8509	0.4013	1.07%	0.7953	0.5118	0.97%	0.7716	0.5071	0.82%	
	DCNv2	<u>0.8548</u>	0.3893	0.61%	0.7956	0.5103	0.93%	0.7724	0.5057	0.72%	
	$\mathbf{FLIP}_{\mathrm{ID}}$ (Ours)	0.8600*	0.3802*	-	0.8030*	0.5043*	-	0.7779*	0.5014*	-	
	CTR-BERT	0.8304	0.4131	1.88%	0.7795	0.5300	1.65%	0.7385	0.5316	1.23%	
PLM-based	P5	0.8304	0.4173	1.88%	0.7801	0.5261	1.58%	0.7365	0.5336	1.51%	
PLM-based	PTab	0.8426	0.4195	0.41%	<u>0.7880</u>	0.5384	0.56%	<u>0.7456</u>	0.5268	0.27%	
	\mathbf{FLIP}_{PLM} (Ours)	0.8460*	0.4127*	-	0.7924*	0.5304*	-	0.7476*	0.5255*	-	
	CTRL	0.8572	0.3838	0.57%	0.7985	0.5101	0.95%	0.7741	0.5045	0.59%	
ID+PLM	MoRec	0.8561	0.3896	0.70%	<u>0.7990</u>	0.5087	0.89%	0.7731	0.5085	0.72%	
	FLIP (Ours)	0.8621*	0.3788*	-	0.8061*	0.5004*	-	0.7787*	0.5001*	-	

• Practical Values: FLIP's fine-grained alignment (joint MLM+MTM) outperforms instancelevel methods, enables meaningful feature-level interactions, and enhances diverse IDbased models (DeepFM, AutoInt, DCNv2) and PLMs of varying sizes.

• Background

- Sequential recommender systems (SRS) predict user preferences through interaction history using learned item embeddings
- Motivation
 - SRS models lack semantic understanding of textual item attributes.
 - LLMs have strong semantics but poor item-level distinction for recommendations.
- Key Stages
 - Supervised Contrastive Fine-Tuning (SCFT)
 - Recommendation Adaptation Training (RAT)

Embedding - LLMEmb



Stage 1: Supervised Contrastive Fine-Tuning (SCFT)

- Build prompts for each item
 - Includes instruction + attributevalue pairs.

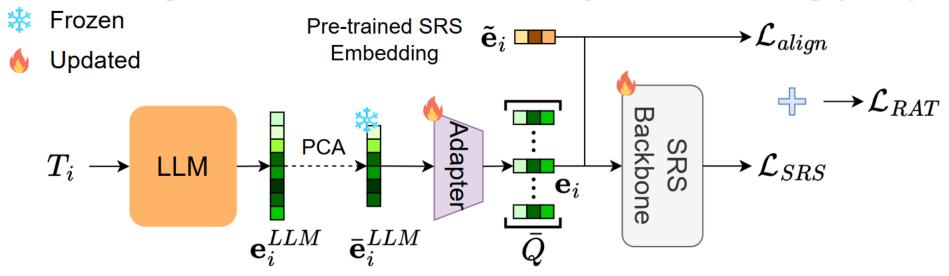
Data Augmentation

• Randomly drop attributes to create two prompt views per item (as positive pairs).

Contrastive Learning

- Use contrastive loss to bring sameitem embeddings closer, push different-item embeddings apart.
- Outcome
 - LLM learns to encode subtle attribute differences, providing stronger item representations.

Stage 2: Recommendation Adaptation Training (RAT)



- Embedding Transformation: Use PCA to reduce dimensionality, then an adapter (two-layer MLP) to match the SRS size.
- Adaptation: Freeze LLM, train the adapter and SRS backbone together using SRS loss.
- **Collaborative Alignment**: Align adapter output with embeddings from a trained SRS, using contrastive loss to prevent overfitting.

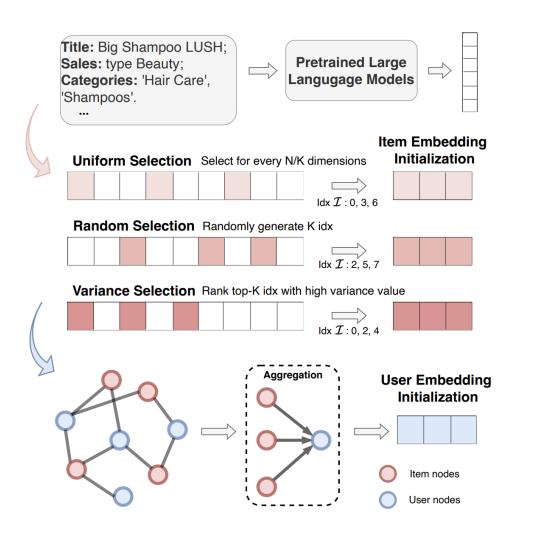
- August 3-7, 202!
- **LLMEmb** outperforms all baselines on Yelp, Amazon Beauty, and Fashion, especially improving recommendations for less popular (long-tail) items.

			Ye	elp			Fas	hion			Bea	nuty	
Backbone	Model	Ove	erall	Ta	ail	Ove	erall	Т	ail	Ove	erall	Tail	
		H@10	N@10	H@10	N@10	H@10	N@10	H@10	N@10	H@10	N@10	H@10	N@10
	- None	0.4879	0.2751	0.0171	0.0059	0.4798	0.3809	0.0257	0.0101	0.3683	0.2276	0.0796	0.0567
	- MELT	0.4985	0.2825	0.0201	0.0079	0.4884	0.3975	0.0291	0.0112	0.3702	0.2161	0.0009	0.0003
CDU4Daa	- LLM2X	0.4872	0.2749	0.0201	0.0072	0.4881	0.4100	0.0264	0.0109	0.4151	0.2713	0.0896	0.0637
GRU4Rec	- SAID	0.4891	0.2764	0.0180	0.0062	0.4920	0.4168	0.0347	0.0151	0.4193	0.2621	0.0936	0.0661
	- TSLRec	0.4528	0.2509	0.0255	0.0095	0.4814	0.4042	0.0149	0.0071	0.3119	0.1865	0.0750	0.0474
	- LLMEmb	0.5270*	0.2980*	0.1116*	0.0471*	0.5062*	0.4329*	0.1046*	0.0477*	0.4445*	0.2726	0.3183*	0.1793*
	- None	0.5307	0.3035	0.0115	0.0044	0.4668	0.3613	0.0142	0.0067	0.3984	0.2367	0.0101	0.0038
	- MELT	0.6206	0.3770	0.0429	0.0149	0.4897	0.3810	0.0059	0.0019	0.4716	0.2965	0.0709	0.0291
Dout 4Doo	- LLM2X	0.6199	0.3781	0.0874	0.0330	0.5109	0.4159	0.0377	0.0169	0.5029	0.3209	0.0927	0.0451
Bert4Rec	- SAID	0.6156	0.3732	0.0973	0.0382	0.5135	0.4124	0.0694	0.0433	0.5127	0.3360	0.1124	0.0664
	- TSLRec	0.6069	0.3680	0.0969	0.0388	0.5078	0.4143	0.0418	0.0182	0.4936	0.3178	0.1013	0.0589
	- LLMEmb	0.6294*	0.3881*	0.1876*	0.1094*	0.5244*	0.4238*	0.1485*	0.0764*	0.5247*	0.3485*	0.2430*	0.1224*
	- None	0.5940	0.3597	0.1142	0.0495	0.4956	0.4429	0.0454	0.0235	0.4388	0.3030	0.0870	0.0649
	- MELT	0.6257	0.3791	0.1015	0.0371	0.4875	0.4150	0.0368	0.0144	0.4334	0.2775	0.0460	0.0172
SASRec	- LLM2X	0.6415	0.3997	0.1760	0.0789	0.5210	0.4486	0.0768	0.0473	0.5043	0.3319	0.1608	0.0940
SASKCC	- SAID	0.6277	0.3841	0.1548	0.0669	0.5316	0.4619	0.0901	<u>0.0540</u>	<u>0.5097</u>	0.3343	0.1549	0.0906
	- TSLRec	0.6152	0.3795	0.1383	0.0620	0.5125	0.4594	0.0652	0.0382	0.4977	<u>0.3366</u>	0.1211	0.0789
	- LLMEmb	0.6647*	0.4113*	0.2951*	0.1456*	0.5521*	0.4730*	0.1513*	0.0826*	0.5277*	0.3460*	0.4194*	0.2595*

• **Practical Values:** LLMEmb's SCFT+RAT framework bridges semantic understanding with collaborative filtering, enables efficient precomputed embeddings, and enhances sequential recommenders without runtime overhead.

Background

- Collaborative filtering models predict user preferences through interaction patterns but face cold-start and embedding collapse challenges.
- Motivation
 - CF models capture interaction patterns but lack semantic understanding.
 - LLMs provide rich semantics but struggle with item-level distinctions.
- Key Stages
 - Selective Sampling
 - Efficient Initialization



• LLMInit bridges the LLM-CF embedding gap using selective initialization with sampling strategies to transfer knowledge from large LLM embeddings to lightweight CF models.

Selective Sampling

 Extract K-dimensional embeddings from LLM representations using variance-based and random selection strategies.

Efficient Initialization

 Initialize CF models with LLM embeddings to inherit semantic knowledge while maintaining scalability.

Embedding - LLMInit

August 3-7, 2025

• **LLMInit** significantly outperforms baseline CF models across all datasets (Beauty, Toys-Games, Tools-Home, Office-Products).

Method	Bea	uty	Toys-0	Games	Tools-	Home	Office-Products		
Methou	Recall@10	NDCG@10	Recall@10	NDCG@10	Recall@10	NDCG@10	Recall@10	NDCG@10	
LightGCN [7]	0.0910	0.0432	0.0775	0.0360	0.0574	0.0283	0.0745	0.0365	
+LLMInit-Rand	0.0960 (+5.5%)	0.0467 (+8.1%)	0.0805 (+3.9%)	0.0387 (+7.50%)	0.0612 (+6.6%)	0.0313 (+10.6%)	0.0773 (+3.8%)	0.0387 (+6.0%)	
+LLMInit-Uni	0.1006 (+10.6%)	0.0469 (+8.6%)	0.0806 (+4.0%)	0.0388 (+7.8%)	0.0633 (+10.3%)	0.0319 (+12.7%)	0.0791 (+6.2%)	0.0395 (+8.2%)	
+LLMInit-Var	0.1019 (+12.0%)	0.0485 (+12.3%)	0.0808 (+4.3%)	0.0389 (+8.1%)	0.0633 (+10.3%)	0.0317 (+12.0%)	0.0816 (+9.5%)	0.0414 (+13.4%)	
SGL [23]	0.1017	0.0474	0.0832	0.0380	0.0580	0.0284	0.0669	0.0297	
+LLMInit-Rand	0.1069 (+5.1%)	0.0520 (+9.7%)	0.0885 (+6.4%)	0.0418 (+10.0%)	0.0692 (+19.3%)	0.0337 (+18.7%)	0.0810 (+21.1%)	0.0426 (+43.4%)	
+LLMInit-Uni	0.1101 (+8.3%)	0.0513 (+8.2%)	0.0920 (+10.6%)	0.0424 (+11.6%)	0.0676 (+16.6%)	0.0333 (+17.3%)	0.0773 (+15.6%)	0.0350 (+17.9%)	
+LLMInit-Var	0.1106 (+8.8%)	0.0530 (+11.8%)	0.0927 (+11.4%)	0.0427 (+12.4%)	0.0686 (+18.3%)	0.0339 (+19.4%)	0.0794 (+18.7%)	0.0421 (+41.8%)	
SGCL [32]	0.1027	0.0499	0.0828	0.0382	0.0585	0.0294	0.0647	0.0298	
+LLMInit-Rand	0.1094 (+6.5%)	0.0512 (+2.6%)	0.0929 (+12.2%)	0.0418 (+9.4%)	0.0651 (+11.3%)	0.0326 (+10.9%)	0.0770 (+19.0%)	0.0365 (+22.5%)	
+LLMInit-Uni	0.1115 (+8.6%)	0.0513 (+2.8%)	0.0923 (+11.5%)	0.0422 (+10.5%)	0.0650 (+11.1%)	0.0327 (+11.2%)	0.0742 (+14.7%)	0.0354 (+18.8%)	
+LLMInit-Var	0.1104 (+7.5%)	0.0522 (+4.6%)	0.0941 (+13.6%)	0.0421 (+10.2%)	0.0646 (+10.4%)	0.0327 (+11.2%)	0.0776 (+19.9%)	0.0366 (+22.8%)	

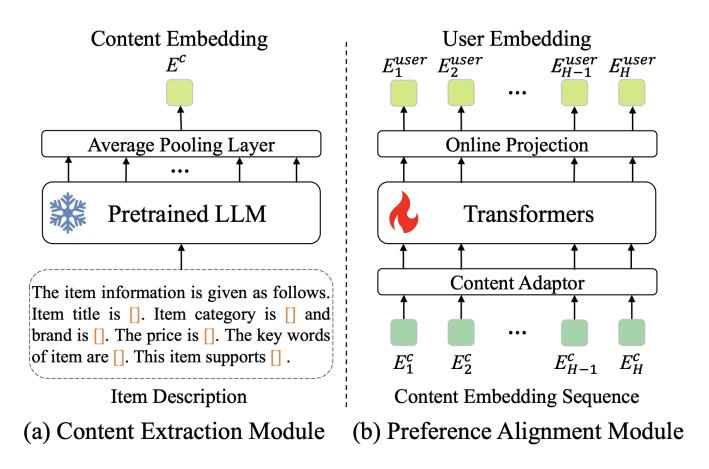
• **Practical Values:** LLMInit provides a "free lunch" approach for enhancing CF models with LLM semantic knowledge while maintaining high efficiency and scalability for real-world deployment.

Background

- Real-world LLM deployment in recommendation is hindered by the Domain Gap and Catastrophic Forgetting.
- Motivation
 - Domain Gap: Mismatch between LLM's open-world knowledge and recommendations' collaborative knowledge.
 - Catastrophic Forgetting: Fine-tuning LLMs to their full extent causes them to forget pre-trained knowledge.
- Key Components
 - Content-Embedding Generation (CEG)
 - Preference Comprehension (PCH)

LEARN is a twin-tower framework that adapts LLM knowledge by freezing the LLM and using self-supervised training.

- Content-Embedding Generation
 - Uses a frozen LLM as an item encoder to convert text into rich content embeddings. Freezing is key to preventing catastrophic forgetting.
- Preference Comprehension
 - A lightweight Transformer learns user preferences from item embeddings via contrastive learning.



Embedding - LEARN

• **LEARN** achieves SOTA performance on large-scale offline datasets and delivers significant business impact in real-world online A/B tests on Kuaishou.

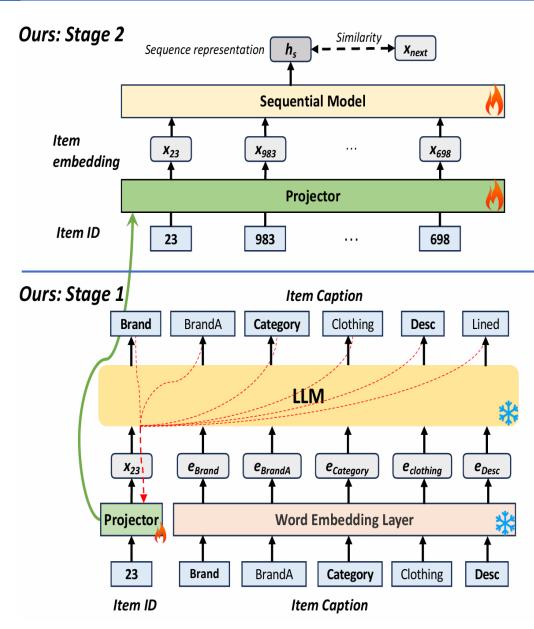
Method	H@10	H@50	H@200
SASRec [20] HSTU [43]	0.0306 0.0416 (+35.95%)	0.0754 0.0957 (+26.92%)	0.1431 0.1735 (+21.24%)
LEARN (Ours)	0.0407 (+33.01%)	0.0979 (+29.84%)	0.1874 (+30.96%)
_	N@10	N@50	N@200
SASRec [20]	0.0164	0.0260	0.0362
HSTU [43] LEARN (Ours)	0.0227 (+38.41%) 0.0224 (+36.59%)	0.0344 (+32.31%) 0.0371 (+42.69%)	0.0461 (+27.35%) 0.0483 (+33.43%)

• **Practical Values:** LEARN is the first LLM-enhanced solution successfully deployed and monetized in a large-scale industrial recommender system, setting a new standard for practical application.

Embedding - SAID

- Background
 - LLMs enhance sequential recommendation models with their generalization ability and knowledge base.
- Motivation
 - LLM embeddings may lose fine-grained item information
 - Long token sequences cause efficiency issues
- Key Stages
 - Semantically Aligned Embedding Learning
 - Model-agnostic Sequential Recommender Training

Embedding - SAID



SAID learns item embeddings aligned with LLM text descriptions, usable with lightweight sequential models.

August 3-7, 2025

- Semantically Aligned Embedding Learning
 - SAID learns to generate an embedding for each item by leveraging the projector module and an on-the-shelf LLM.
- Model-agnostic Sequential Recommender Training
 - The embeddings acquired during the first stage are utilized as initial features of the items, which are then inputted into a downstream model for sequential recommendation.

Embedding - SAID

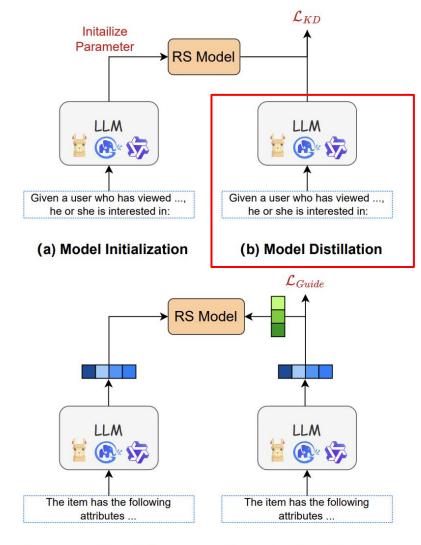
• Experiments conducted on public datasets above and Alipay's online advertising deployment justify the efficiency and efficacy of SAID.

Detect	Matrica		GRU	4Rec			SAS	Rec	
Dataset	Metrics	Random	LH	SAID	Improv.	Random	LH	SAID	Improv.
	NDCG@10	0.0896	0.0958	0.1021	6.6%	0.0869	0.0992	0.1050	5.8%
Scientific	Recall@10	0.1037	0.1317	0.1321	0.3%	0.1088	0.1313	0.1353	3.0%
	MRR	0.0877	<u>0.0913</u>	0.0977	7.0%	0.0825	0.0945	0.1005	6.3%
	NDCG@10	0.0760	0.0774	0.0862	11.4%	0.0768	0.0837	0.0928	10.9%
Instruments	Recall@10	0.0910	0.1085	0.1122	3.4%	0.0920	0.1158	0.1211	4.6%
	MRR	0.0741	0.0741	0.0832	12.3%	0.0750	0.0802	0.0896	11.7%
	NDCG@10	0.0878	0.1057	0.1180	11.6%	0.1017	0.0995	0.1090	7.2%
Arts	Recall@10	0.0978	0.1441	0.1413	-	0.1302	0.1433	0.1487	3.8%
	MRR	0.0866	<u>0.0993</u>	0.1145	15.3%	<u>0.0951</u>	0.0910	0.1017	6.9%
	NDCG@10	0.1127	0.1136	0.1202	5.8%	0.1084	0.1134	0.1208	6.5%
Office	Recall@10	0.1285	0.1374	0.1440	4.8%	0.1265	0.1377	0.1450	5.3%
	MRR	0.1097	<u>0.1098</u>	0.1160	5.6%	0.1047	0.1092	0.1165	6.7%
	NDCG@10	0.0641	0.0748	0.0785	4.9%	0.0673	0.0752	0.0812	8.0%
Games	Recall@10	0.0877	0.1221	0.1173	-	0.0936	0.1221	0.1204	-
	MRR	0.0617	0.0694	0.0741	6.8%	0.0647	0.0696	0.0770	10.6%
	NDCG@10	0.0854	0.0925	0.0960	3.8%	0.0878	0.0881	0.0951	7.9%
Pet	Recall@10	0.0945	0.1120	0.1152	2.9%	0.0978	0.1062	0.1129	6.3%
	MRR	0.0843	0.0902	0.0934	3.5%	<u>0.0866</u>	0.0859	0.0929	7.3%

 Practical Values: SAID significantly enhances inference efficiency and recommendation accuracy, making large language models practically applicable in industrial recommendation scenarios.

Model Initialization

- This subcategory refers to compressing LLM knowledge into smaller RS models through distillation techniques.
- This approach transfers LLM capabilities to lightweight models while maintaining recommendation quality for efficient deployment.
- Categories
 - Feature-based
 - Response-based



(c) Embedding Utilization

(d) Embedding Guidance

- Background
 - Medication recommendation provides prescription suggestions to doctors. LLMs have two advantages: medical semantic understanding and cold-start capabilities.
- Motivation
 - Complex medication names cause LLMs to output recommendations not in drug databases, leading to failures.
 - Resource-intensive LLM inference challenges resource-constrained medical institutions in using LLMs for drug recommendations.
- Key Stages
 - Improve for LLMs
 - Distilling LLMs

Liu, Qidong, et al. "Large language model distilling medication recommendation model." arXiv preprint arXiv:2402.02803 (2024).

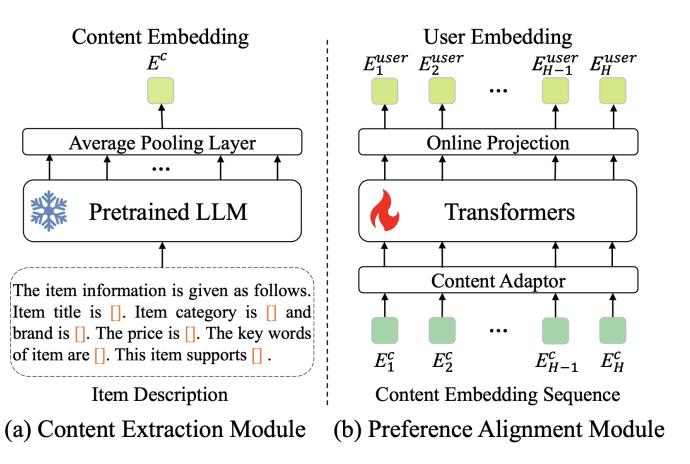
Feature-based - LEADER

LEADER improved the recommendation performance of LLMs by enhancing the output layer.

- Improve for LLMs
 - Replace the original text generation head layer of the large model with a new classification layer, and fine-tune the model using BCE loss.

• Distilling LLMs

 Design the distillation process where the hidden states from the final layer of the LLMs are used as guidance to distill semantic understanding into the designed smaller model.



Feature-based - LEADER

• **LEADER** significantly outperforms baseline. The distilled smaller model demonstrates excellent performance in both overall and cold-start scenarios.

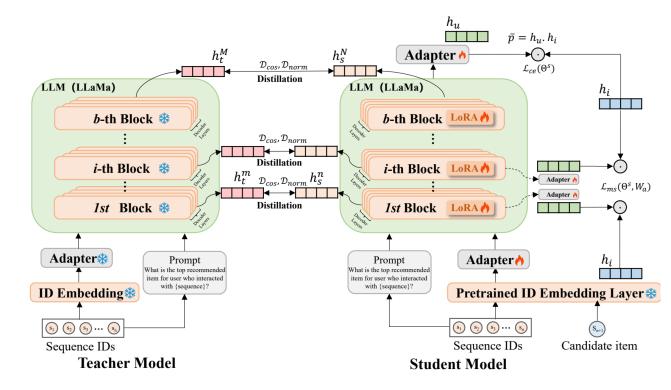
Model		Overall			Multi-visit		Single-visit			
	PRAUC Jaccard		F1 PRAUC		Jaccard	F1	PRAUC	Jaccard	F1	
RETAIN	0.7513 ± 0.0025	0.4943 ± 0.0023	0.6516 ± 0.0022	0.7580 ± 0.0020	0.5106 ± 0.0023	0.6674 ± 0.0022	0.7337 ± 0.0067	0.4811 ± 0.0053	0.6403 ± 0.0049	
G-Bert	-	-	-	0.6904 ± 0.0017	0.4578 ± 0.0019	0.6186 ± 0.0018	-	-	-	
GAMENet	0.7605 ± 0.0011	0.5024 ± 0.0010	0.6595 ± 0.0008	0.7638 ± 0.0023	0.5070 ± 0.0028	0.6635 ± 0.0025	0.7451 ± 0.0053	0.4840 ± 0.0038	0.6442 ± 0.0036	
SafeDrug	0.7582 ± 0.0020	0.5054 ± 0.0024	0.6621 ± 0.0021	0.7623 ± 0.0029	0.5095 ± 0.0027	0.6658 ± 0.0024	0.7416 ± 0.0044	0.4900 ± 0.0043	0.6481 ± 0.0042	
MICRON	-	-	-	0.7651 ± 0.0027	0.5110 ± 0.0025	0.6741 ± 0.0023	-	-	-	
COGNet	-	-	-	0.7771 ± 0.0019	0.5275 ± 0.0021	0.6805 ± 0.0019	-	-	-	
REFINE	-	-	-	0.7791 ± 0.0017	$\overline{0.5235\pm0.0018}$	$\overline{0.6794 \pm 0.0017}$	-	-	-	
LEADER(T)	$ 0.7816 \pm 0.0015^* $	$0.5391 \pm 0.0015^{*}$	$0.6921 \pm 0.0014^{*}$	$0.7854 \pm 0.0015^{*}$	$0.5450 \pm 0.0021*$	$0.6971 \pm 0.0018^{*}$	$ 0.7590 \pm 0.0046^* $	$0.5090 \pm 0.0044*$	$0.6668 \pm 0.0041*$	
	$0.7795 \pm 0.0025^{*}$								$\underline{0.6614 \pm 0.0057}*$	

• **Practical Values:** LEADER can be used for recommending prescriptions for patients who first visit the hospital (cold-start scenarios).

- Background
 - Large Language Models (LLMs) have demonstrated exceptional performance in Sequential Recommendation (SR).
- Motivation
 - Intermediate layers of LLMs are largely redundant for SR tasks.
 - The massive computational and deployment costs make LLMs impractical for industrial applications.
- Key Stages
 - Layer-wise Feature Distillation
 - Dual-Loss Feature Alignment
 - Auxiliary Supervision

Feature-based - SLMRec

- Layer-wise Feature Distillation
 - Aligns intermediate hidden states to transfer rich feature-level knowledge, not just mimic final outputs.
- Dual-Loss Feature Alignment
 - Employs a dual-loss mechanism to match features in both direction and magnitude.
- Auxiliary Supervision
 - Applies early, task-specific supervision to shallow layers, enabling efficient learning in a compact model.



• **SLMRec** achieves state-of-the-art performance while reducing computational costs.

Model	HR@1	Cl HR@5	oth NDCG@5	MRR	HR@1	Мс HR@5	NDCG@5	MRR	Rank
Caser	9.66	15.18	12.66	13.03	4.27	14.96	9.57	10.36	13.50
GRU4Rec	13.79	15.46	14.64	15.15	10.56	19.47	15.11	15.46	9.25
BERT4Rec	13.60	14.66	14.14	14.59	9.68	14.91	12.40	12.74	11.63
SASRec	13.08	16.94	15.01	15.76	5.57	16.80	11.17	12.08	11.63
HGN	15.96	18.70	17.30	18.27	7.54	19.20	13.42	14.73	6.50
LightSANs	14.12	20.32	17.30	16.86	6.08	17.54	11.81	12.82	8.00
S ³ -Rec	14.10	18.67	16.10	16.95	7.75	20.39	15.69	14.34	7.50
DuoRec	13.06	18.29	15.79	15.42	10.07	20.37	17.96	16.61	7.88
MAERec	13.29	18.35	15.68	16.13	8.89	20.24	16.03	15.28	8.38
Open-P5	14.13	17.68	17.02	-	12.66	21.98	17.13	-	5.67
E4SRec	16.71	19.45	18.09	18.77	14.74	23.79	19.45	19.74	1.75
E4SRec ₈	15.30	18.54	16.91	17.60	13.32	22.49	17.99	18.46	4.00
E4SRec ₄	14.58	18.05	16.32	17.01	11.80	21.54	16.73	17.20	5.75
$\mathrm{SLMRec}_{4\leftarrow 8}$	16.69	19.47	18.07	18.74	15.29	24.25	19.90	20.36	1.50

• **Practical Values:** SLMRec offers the industry a path to harness the power of LLMs in recommendation systems in an economical, efficient, and high-performance manner.

• Background

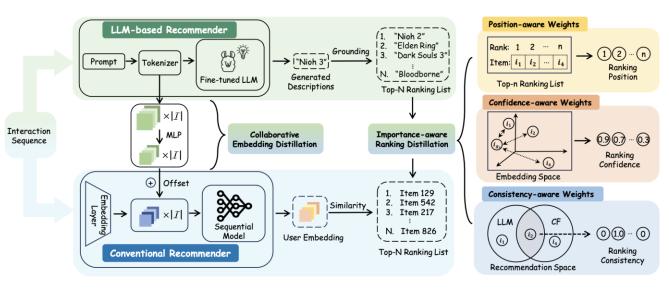
- LLM-based recommenders face serious inference inefficiency issues, posing substantial challenges to their practical applications.
- Motivation
 - Teacher Knowledge Reliability: The teacher's knowledge isn't always reliable.
 - Model Capacity Gap: The student struggles to assimilate teacher knowledge.
 - Semantic Space Divergence: Different "languages" make direct alignment counterproductive.
- Key Stages
 - Importance-aware Ranking Distillation
 - Collaborative Embedding Distillation

Cui, Yu, et al. "Distillation matters: empowering sequential recommenders to match the performance of large language models." Proceedings of the 18th ACM Conference on Recommender Systems. 2024.

Response-based - DLLM2Rec

DLLM2Rec is designed to effectively distill knowledge from LLM-based recommenders to conventional recommenders.

- Importance-aware Ranking Distillation
 - DLLM2Rec introduces importance weights to selectively learn reliable knowledge rather than blindly mimicking teacher rankings.
- Collaborative Embedding Distillation
 - DLLM2Rec performs collaborative fusion to bridge semantic space divergence between teacher and student.



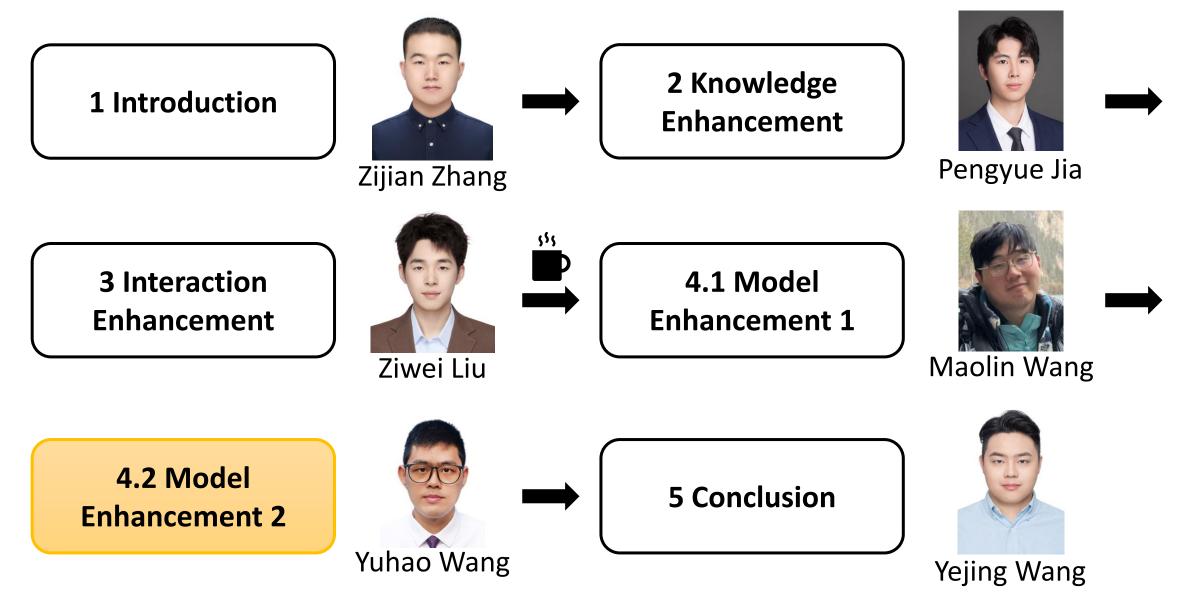
Response-based - DLLM2Rec

• **DLLM2Rec's** lightweight student model not only achieves a million-fold speedup in inference but also outperforms the massive LLM teacher on several datasets.

Backbone	Model	-	ames		vieLens	the second se	loys	Dataset	Model	HR@20	NDCG@20	Inference time
Duckbone	mouer	HR@20	NDCG@20	HR@20	NDCG@20	HR@20	NDCG@20	Dataset		-		
Teacher	BIGRec	0.0532	0.0341	0.0541	0.0370	0.0420	0.0207		BIGRec	0.0532	0.0341	$2.3 \times 10^{4} s$
	+None	0.0305	0.0150	0.0608	0.0236	0.0172	0.0081	Games	DLLM2Rec	0.0751	0.0331	1.8s
	+Hint	0.0284	0.0120	0.0646	0.0240	0.0128	0.0058	Games	DLLWIZKC	0.0751	0.0331	
	+HTD	0.0299	0.0128	0.0578	0.0229	0.0155	0.0062		Gain	+37.41%	-2.99%	$+1.3 \times 10^{6}\%$
	+RD	0.0398	0.0177	0.0667	0.0254	0.0157	0.0076		DICDaa	0.0541	0.0270	1.8×10^{4} s
	+CD	0.0306	0.0149	0.0699	0.0256	0.0126	0.0052		BIGRec	0.0541	0.0370	1.8×10 ⁻ S
	+RRD	0.0359	0.0163	0.0657	0.0243	0.0215	0.0097	MovieLens	DLLM2Rec	0.1063	0.0437	1.7s
GRU4Rec	+DCD	0.0427	0.0190	0.0666	0.0263	0.0262	0.0114		0.	06 100	10 100	1 1. 1060
	+UnKD	0.0370	0.0170	0.0607	0.0226	0.0235	0.0114		Gain	+96.49%	+18.18%	$+1.1 \times 10^{6}\%$
	KAR	0.0307	0.0149	0.0603	0.0229	0.0184	0.0079		BIGRec	0.0420	0.0207	$1.1 \times 10^{4} s$
	LLM-CF	0.0393	0.0174	0.0677	0.0246	0.0132	0.0058	0		0.0420	0.0207	1.1/10 3
	+DLLM2Rec	0.0446	0.0205	0.0815	0.0308	0.0281	0.0118	Toys	DLLM2Rec	0.0463	0.0225	1.6s
	Gain.S	+46.17%	+36.94%	+34.05%	+30.43%	+63.88%	+42.18%		Cain	10 9407	0 700	$+6.8 \times 10^5\%$
	Gain.B	+4.56%	+7.64%	+16.60%	+16.80%	+7.40%	+1.27%		Gain	+10.24%	+8.70%	+0.8×10°%

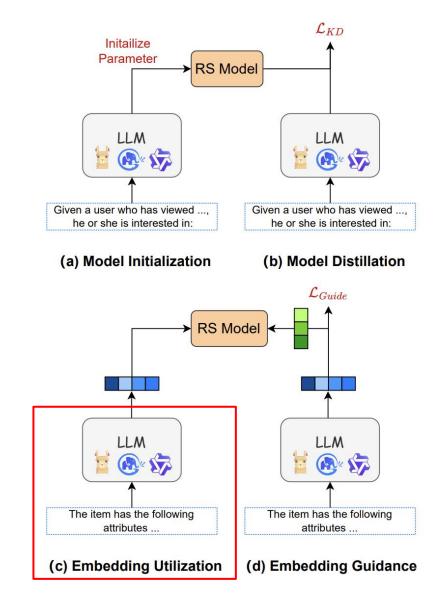
• **Practical Values:** DLLM2Rec provides the industry with a path to integrate the powerful capabilities of large language models into existing recommendation systems in an economical, efficient, and feasible manner.

Agenda



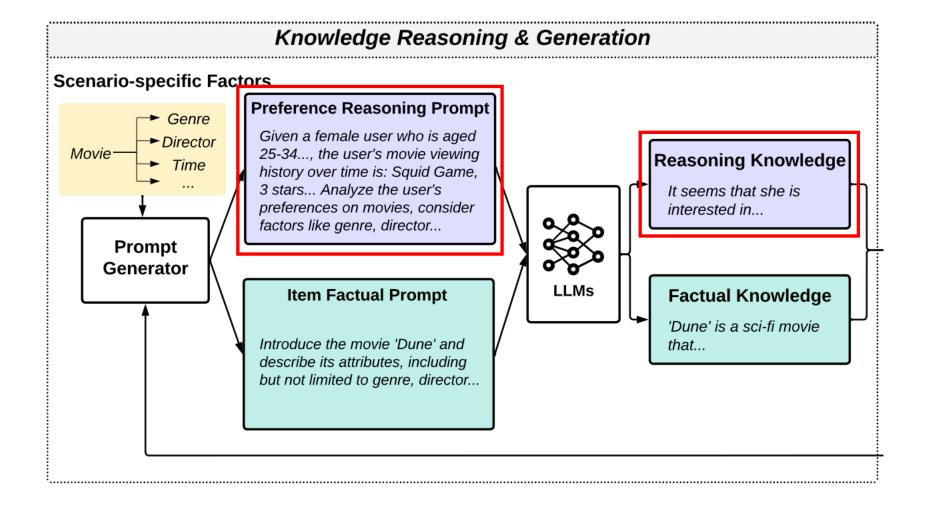
Embedding Utilization

- This subcategory refers to utilizing the embeddings derived from LLM to enhance traditional RS as a semantic supplement.
- This approach tackles the deficiency that textual outputs are often difficult and inefficient to be integrated into RS directly.
- Categories
 - User Only
 - Item Only
 - User & Item



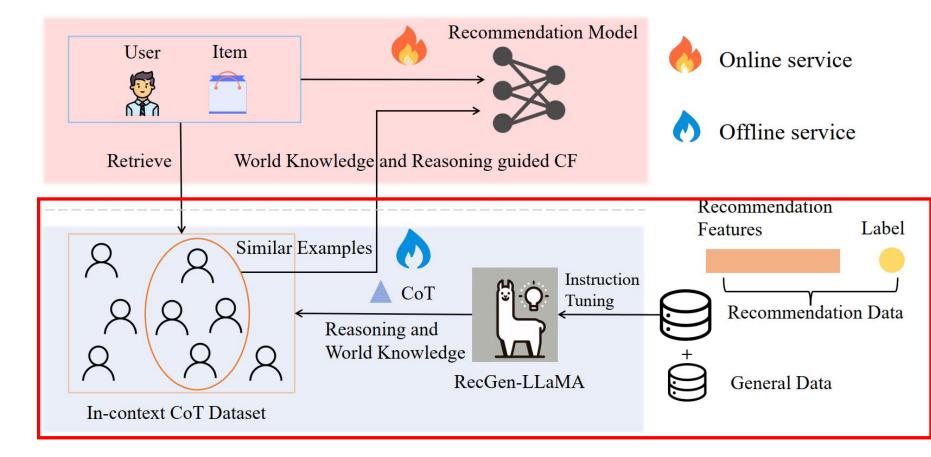
KAR

 Reasoning about user preferences given user profile and interactions



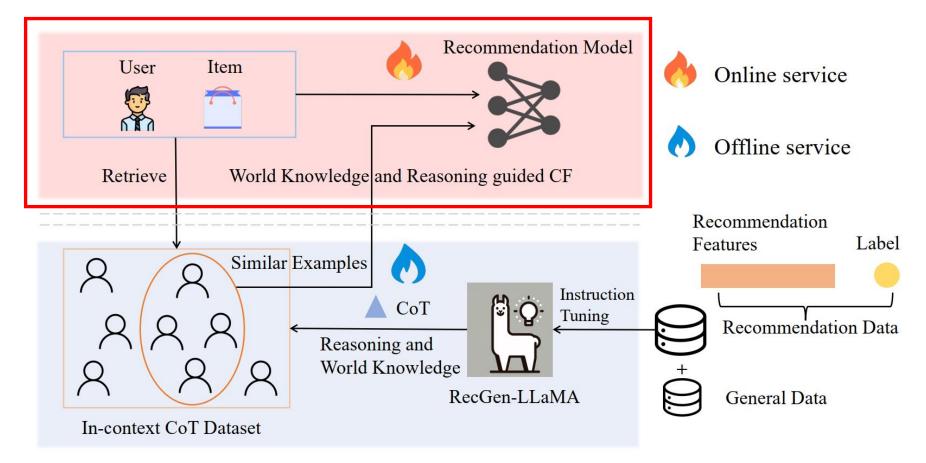
Offline service

- Chain of Thought (CoT) reasoning
- In-context CoT dataset construction



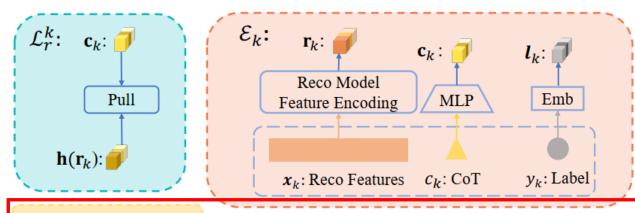
Online service

- In-context CoT examples Retrieval
- World knowledge & reasoning guided CF
- Feature enhanced RS



CoT Prompt

 Generating CoT of the user's decision making on the target item



Chain of Thought Prompt

<SYS>>> As an AI model developed for analyzing consumer behavior, your task is to generate a chain of thought that considers the following points:

1. Utilize the user's interaction history and review comments to summarize their profiles.

2. Introduce the target new item and detail its features precisely. In addition, integrate information about items related to the current target new item ...

Contemplate the alignment between the user's profile and the features of the target item.
 Reflect on the user's potential desire for diversity in their purchases.

Your output should be a clear and logical chain of thought... Ensure your analysis is impartial... Focus should be on understanding factors that influence the user's decision-making regarding the target item. <</sys>

Please generate a chain of thought based on the user's ... considering how these might relate to their interest in the target new item.

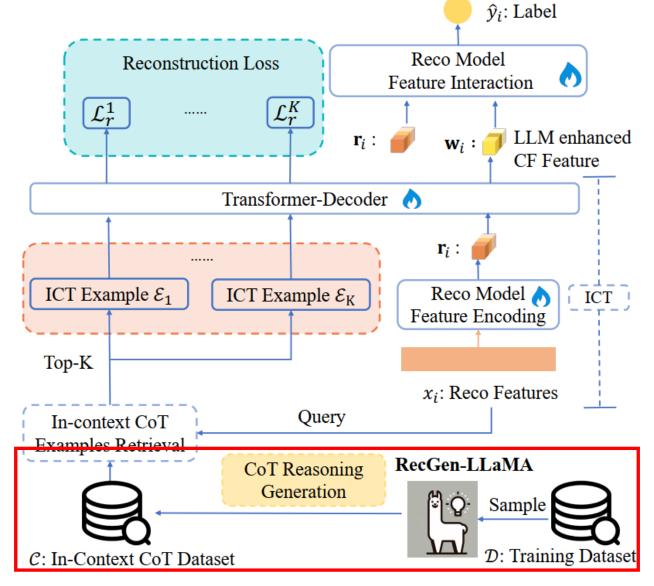
{Recommendation Features}

User's decision-making: The user {Ground-Truth Label} the target new item. Let's think step by step and develop the chain of thought for the above considerations. Commence with the chain of thought immediately:

KDD2+25 CityU

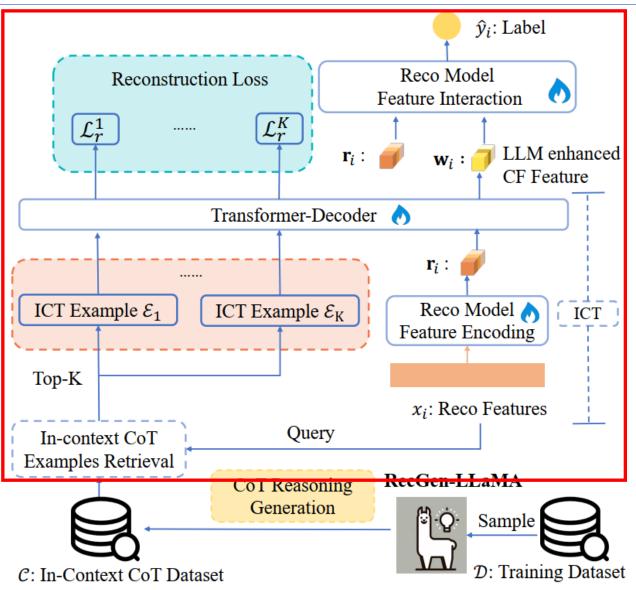
Offline Service

- Instruction tuning on LLaMA2
- RecGen-LLaMA generating CoT forming ICT dataset



Online Service

- Embedding-based revrieval forming ICT examples
- Learning world-knowledge and reasoning guided CF feature

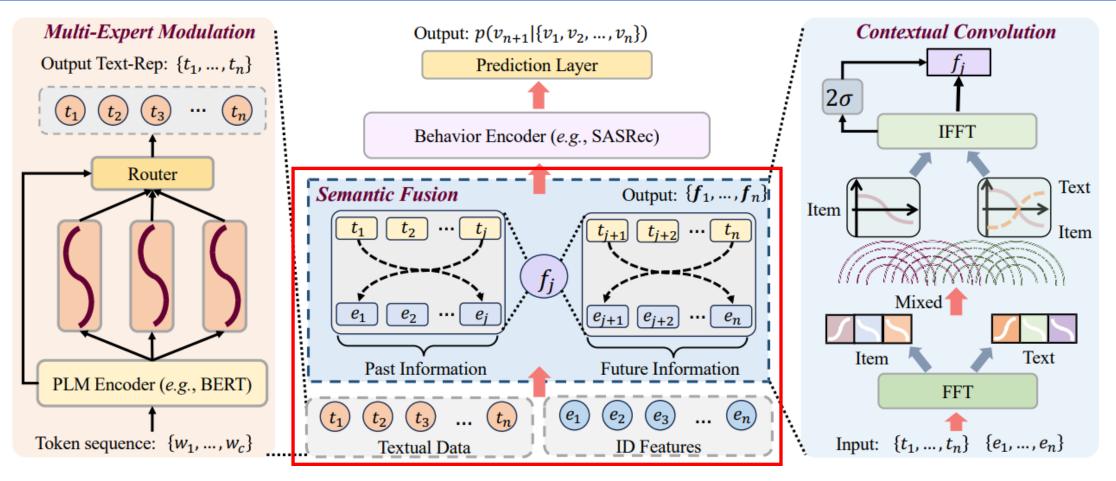


Overall performance

Backbone	Framework		Sports			Beauty			Toys	
Duchbone	Traine work	AUC↑	Logloss↓	RelaImpr↑	AUC↑	Logloss↓	RelaImpr↑	AUC↑	Logloss↓	RelaImpr↑
	None	0.7990	0.5471	0.000%	0.7853	0.5545	0.000%	0.7681	0.5770	0.000%
DeepFM	KD	0.8043	0.5404	1.773%	0.7959	0.5442	3.715%	0.7713	0.5716	1.194%
	KAR	0.7991	0.5469	0.033%	0.7870	0.5546	0.596%	0.7698	0.5718	0.634%
	LLM-CF	0.8137*	0.5306*	4.916 %	0.8044*	0.5366 *	6.695%	0.7881 *	0.5581 *	7.460%
	None	0.8158	0.5318	0.000%	0.8065	0.5359	0.000%	0.7836	0.5589	0.000%
wDoonEM	KD	0.8169	0.5298	0.348%	0.8104	0.5345	1.272%	0.7865	0.5553	1.023%
xDeepFM	KAR	0.8161	0.5279	0.094%	0.8101	0.5315	1.175%	0.7898	0.5529	2.186%
	LLM-CF	0.8196*	0.5248^{*}	1.203%	0.8113	0.5311	1.566%	0.7947*	0.5473^{*}	3.914%
	None	0.8003	0.5444	0.000%	0.7949	0.5469	0.00%	0.7630	0.5770	0.000%
AutoInt	KD	0.8012	0.5439	0.300%	0.7961	0.5444	0.407%	0.7635	0.5770	0.190%
Autoint	KAR	0.8039	0.5390	1.199%	0.7939	0.5476	-0.339%	0.7683	0.5741	2.015%
	LLM-CF	0.8088*	0.5391	2.831%	0.8090*	0.5321*	4.781 %	0.7754 *	0.5685 *	4.714%
	None	0.8023	0.5442	0.000%	0.8146	0.5255	0.000%	0.7621	0.5831	0.000%
DCNv1	KD	0.8040	0.5441	0.562%	0.8147	0.5286	0.031%	0.7652	0.5847	1.183%
DUNVI	KAR	0.8024	0.5469	0.033%	0.8165	0.5229	0.604%	0.7651	0.5821	1.144%
	LLM-CF	0.8092*	0.5368*	2.282%	0.8182 *	0.5216*	1.144%	0.7702 *	0.5745^{*}	3.090%
	None	0.8110	0.5331	0.000%	0.8028	0.5378	0.00%	0.7774	0.5650	0.000%
DCNv2	KD	0.8112	0.5320	0.064%	0.8057	0.5343	0.958%	0.7827	0.5609	1.911%
DCNV2	KAR	0.8087	0.5363	-0.739%	0.8003	0.5404	-0.825%	0.7759	0.5662	-0.541%
	LLM-CF	0.8131*	0.5307*	0.675%	0.8033	0.5372	0.165%	0.7812	<u>0.5619</u>	1.370%
	None	0.7986	0.5519	0.000%	0.7861	0.5613	0.000%	0.7586	0.5885	0.000%
DIN	KD	0.8023	0.5422	1.239%	<u>0.7934</u>	0.5518	2.551%	0.7652	0.5847	2.552%
DIN	KAR	0.7971	0.5525	-0.502%	0.7861	0.5604	0.000%	0.7620	0.5874	1.315%
	LLM-CF	0.8089*	0.5374^{*}	3.449%	0.7967 *	0.5492^{*}	3.705 %	0.7783 *	0.5699*	7.618%

• LLM-CF achieves improvement on different CTR backbones.

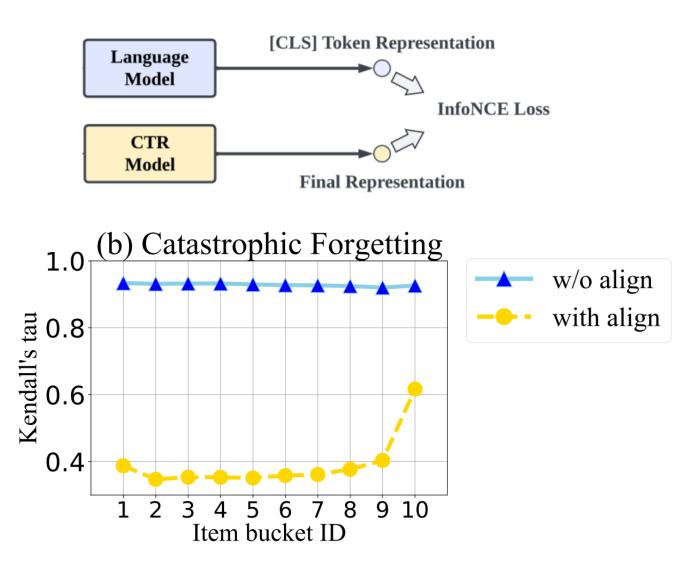
TedRec



• TedRec applies Fourier Transform to conduct semantic fusion in the frequency domain.

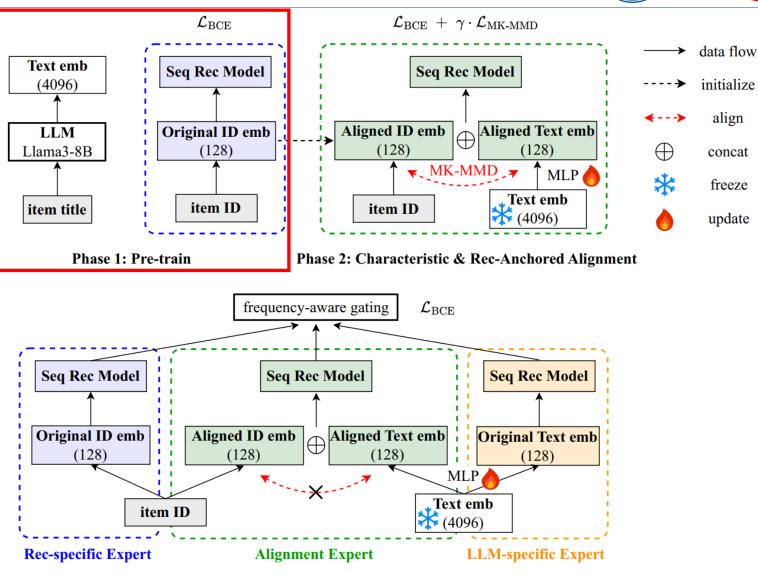
Xu, Lanling, et al. "Sequence-level Semantic Representation Fusion for Recommender Systems." CIKM 2024.

- Challenges for Alignment + SFT
 - Inability to Capture All Statistics of Data Distribution: Contrastive learning with common cosine kernel is not optimal
 - Catastrophic Forgetting in Alignment: With only one set of collaborative embeddings, the alignment leads to catastrophic forgetting on the collaborative embeddings



• Pre-train

• Text & Collaborative emb

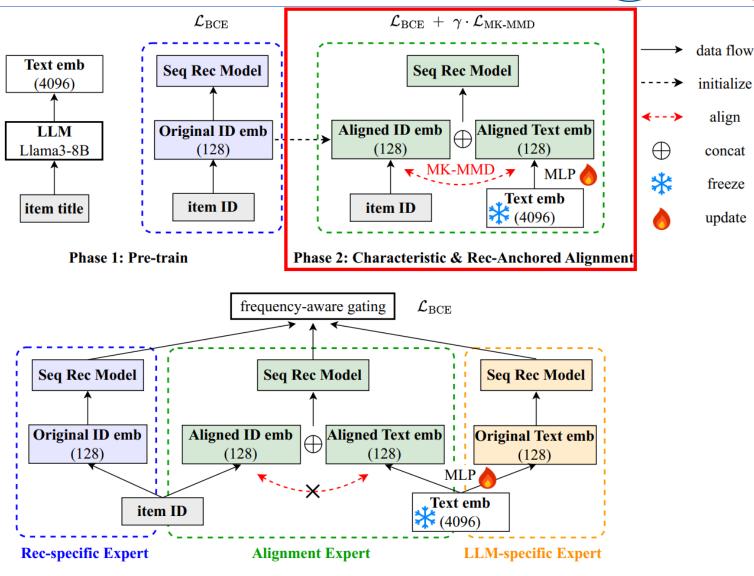


Phase 3: Triple-Experts Fine-tune

August 3-7, 2025 KDD2+25 CityU

• Align

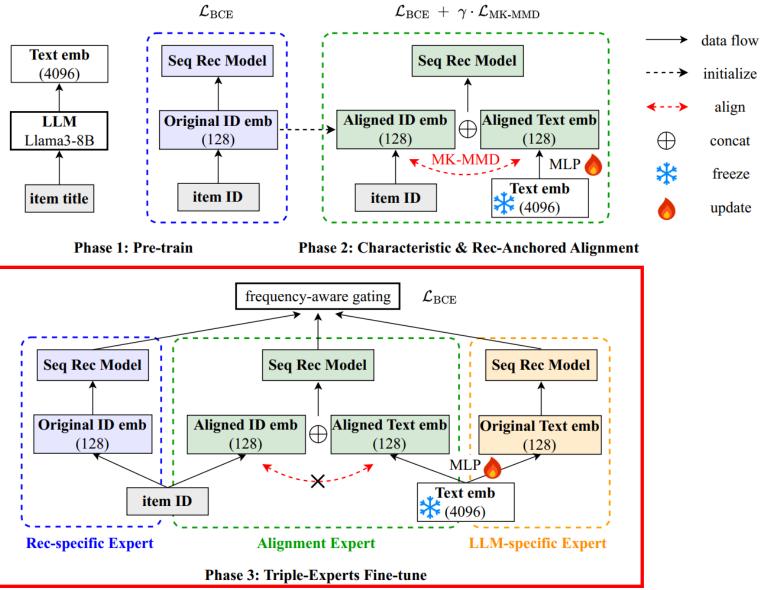
- Recommendation as anchor
- Multi-kernel maximum mean discrepancy as alignment loss based on characteristic kernel



Phase 3: Triple-Experts Fine-tune

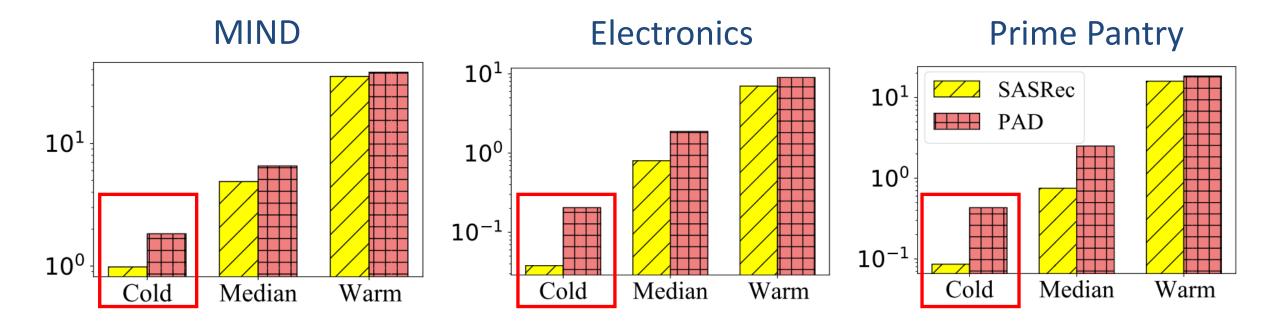
• Disentangle

• Triple-Experts & Multi-Emb



Datasets	Metric	SASRec	Hybrid	MoRec	CTRL	MAKE	DisCo	SMEM	Ours	Impr.
MIND	HR@10 nDCG@10	16.8437 9.0520	17.3385 9.3321	14.1235 7.7090	18.1318 9.7996	16.4317 8.9684	17.3367 9.4131	$\frac{18.4319}{10.0003}$	18.6703* 10.1515*	10.84% 12.15%
Electronics	HR@10 nDCG@10	1.6754 0.7938	1.5673 0.8385	0.9562 0.4721	1.9468 0.9370	0.9495 0.4611	1.8148 0.9025	$\frac{2.3492}{1.4287}$	2.4804* 1.5373*	48.05% 93.67%
Prime Pantry	HR@10 nDCG@10	2.6338 1.2926	3.1000 1.5606	3.1699 1.6013	2.8048 1.3700	3.3408 1.6379	2.8358 1.3451	$\frac{3.4341}{1.7440}$	3.8303* 1.9104*	45.43% 47.80%

• PAD surpasses all baselines and achieves significant improvement.



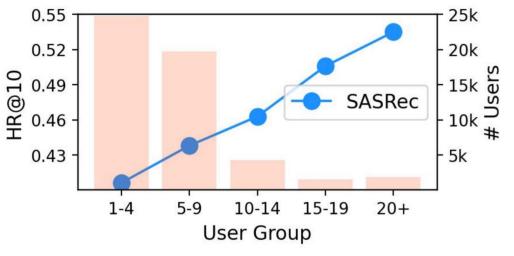
• PAD can mitigate cold-start problem with LLM knowledge.

Long-tail Challenges for SR

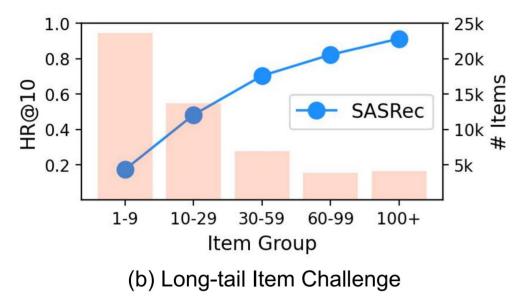
 Long-tail User Challenge: The majority of users receive less than optimal recommendation services
 → Poor experience for new users

 \rightarrow Less profits for small sellers

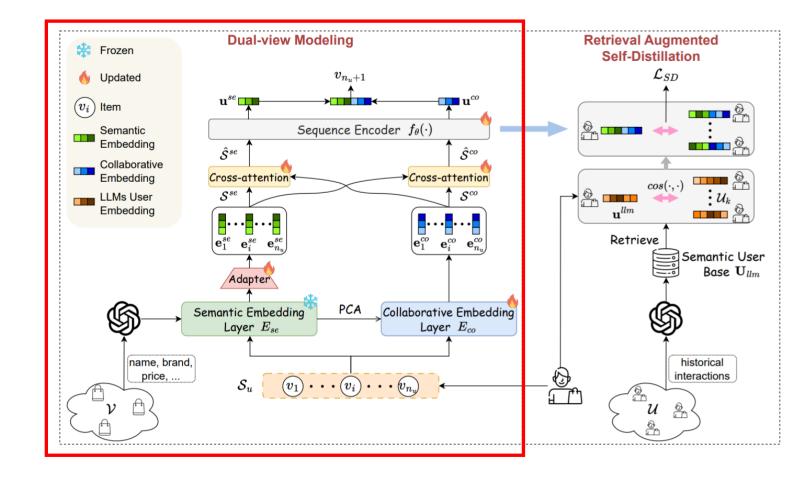
• LLMs are promising to address the long-tail challenges from semantic view!



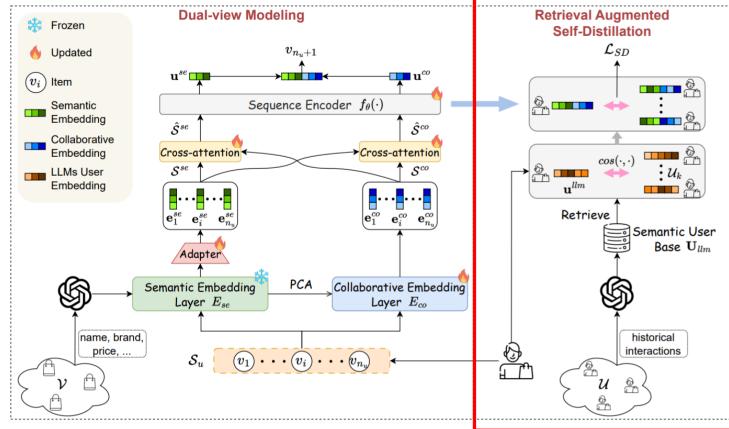
(a) Long-tail User Challenge



 Dual-view Modeling: Consisting of semantic-view modeling and collaborative-view modeling to address the long-tail item issue



• Retrieval Augmented Self-Distillation: Enhancing the SRS model to address the long-tail user problem



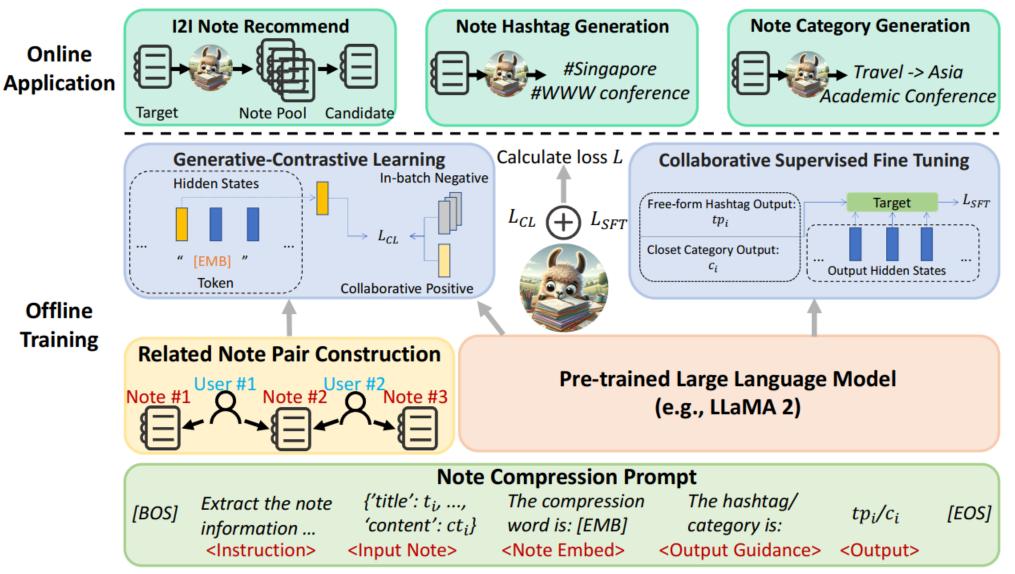
Dataset	Model	Ove	erall	Tail	Item	Head	Item	Tail	User	Head	User
		H@10	N@10								
2	GRU4Rec	0.4879	0.2751	0.0171	0.0059	0.6265	0.3544	0.4919	0.2777	0.4726	0.2653
	- CITIES	0.4898	0.2749	0.0134	0.0051	0.6301	0.3543	0.4936	0.2783	0.4756	0.2618
	- MELT	0.4985	0.2825	0.0201	0.0079	0.6393	0.3633	0.5046	0.2865	0.4750	0.2671
	- RLMRec	0.4886	0.2777	0.0188	0.0067	0.6269	0.3574	0.4920	0.2804	0.4756	0.2671
	- LLMInit	0.4872	0.2749	0.0201	0.0072	0.6246	0.3537	0.4908	0.2775	0.4732	0.2647
	- LLM-ESR	0.5724*	0.3413*	0.0763*	0.0318*	0.7184*	0.4324*	0.5782*	0.3456*	0.5501*	0.3247*
Voln	Bert4Rec	0.5307	0.3035	0.0115	0.0044	0.6836	0.3916	0.5325	0.3047	0.5241	0.2988
Yelp	- CITIES	0.5249	0.3015	0.0041	0.0014	0.6783	0.3899	0.5274	0.3032	0.5155	0.2954
	- MELT	0.6206	0.3770	0.0429	0.0149	0.7907	0.4836	0.6210	0.3780	0.6191	0.3733
	- RLMRec	0.5306	0.3039	0.0104	0.0040	0.6938	0.3922	0.5351	0.3065	0.5137	0.2936
	- LLMInit	0.6199	0.3781	0.0874	0.0330	0.7766	0.4797	0.6204	0.3796	0.6178	0.3723
	- LLM-ESR	0.6623*	0.4222*	0.1227*	0.0500*	0.8212*	0.5318*	0.6637*	0.4247*	0.6571*	0.4127*
	SASRec	0.5940	0.3597	0.1142	0.0495	0.7353	0.4511	0.5893	0.3578	0.6122	0.3672
	- CITIES	0.5828	0.3540	0.1532	0.0700	0.7093	0.4376	0.5785	0.3511	0.5994	0.3649
	- MELT	0.6257	0.3791	0.1015	0.0371	0.7801	0.4799	0.6246	0.3804	0.6299	0.3744
	- RLMRec	0.5990	0.3623	0.0953	0.0412	0.7474	0.4568	0.5966	0.3613	0.6084	0.3658
	- LLMInit	0.6415	0.3997	0.1760	0.0789	0.7785	0.4941	0.6403	0.4010	0.6462	0.3948
	- LLM-ESR	0.6673*	0.4208*	0.1893*	0.0845*	0.8080*	0.5199*	0.6685*	0.4229*	0.6627*	0.4128*

• LLM-ESR leads the overall performance, which indicates better enhancing effects.

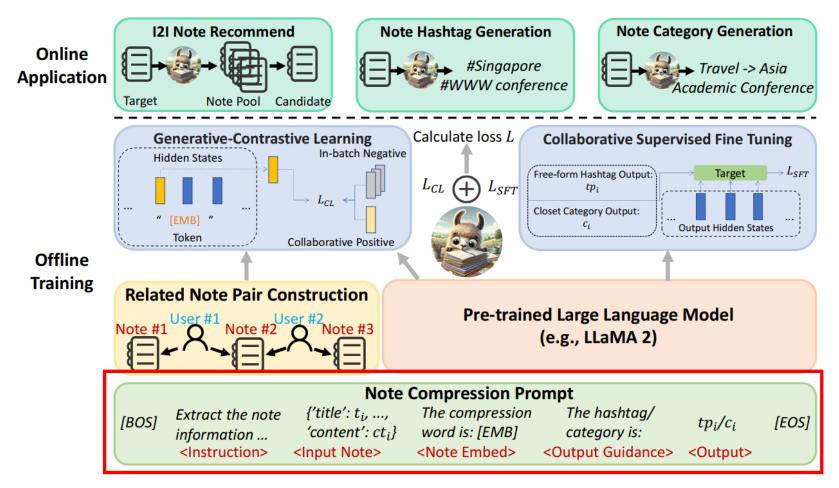
Dataset	Model	Ove	erall	Tail	Item	Head	Item	Tail	User	Head	User
Duruser		H@10	N@10	H@10	N@10	H@10	N@10	H@10	N@10	H@10	N@10
	GRU4Rec	0.4879	0.2751	0.0171	0.0059	0.6265	0.3544	0.4919	0.2777	0.4726	0.2653
	- CITIES	0.4898	0.2749	0.0134	0.0051	0.6301	0.3543	0.4936	0.2783	0.4756	0.2618
	- MELT	0.4985	0.2825	0.0201	0.0079	0.6393	0.3633	0.5046	0.2865	0.4750	0.2671
	- RLMRec	0.4886	0.2777	0.0188	0.0067	0.6269	0.3574	0.4920	0.2804	0.4756	0.2671
	- LLMInit	0.4872	0.2749	0.0201	0.0072	0.6246	0.3537	0.4908	0.2775	0.4732	0.2647
	- LLM-ESR	0.5724*	0.3413*	0.0763*	0.0318*	0.7184*	0.4324*	0.5782*	0.3456*	0.5501*	0.3247*
Voln	Bert4Rec	0.5307	0.3035	0.0115	0.0044	0.6836	0.3916	0.5325	0.3047	0.5241	0.2988
Yelp	- CITIES	0.5249	0.3015	0.0041	0.0014	0.6783	0.3899	0.5274	0.3032	0.5155	0.2954
	- MELT	0.6206	0.3770	0.0429	0.0149	0.7907	0.4836	0.6210	0.3780	0.6191	0.3733
	- RLMRec	0.5306	0.3039	0.0104	0.0040	0.6938	0.3922	0.5351	0.3065	0.5137	0.2936
	- LLMInit	0.6199	0.3781	0.0874	0.0330	0.7766	0.4797	0.6204	0.3796	0.6178	0.3723
	- LLM-ESR	0.6623*	0.4222*	0.1227*	0.0500*	0.8212*	0.5318*	0.6637*	0.4247*	0.6571*	0.4127*
	SASRec	0.5940	0.3597	0.1142	0.0495	0.7353	0.4511	0.5893	0.3578	0.6122	0.3672
	- CITIES	0.5828	0.3540	0.1532	0.0700	0.7093	0.4376	0.5785	0.3511	0.5994	0.3649
	- MELT	0.6257	0.3791	0.1015	0.0371	0.7801	0.4799	0.6246	0.3804	0.6299	0.3744
	- RLMRec	0.5990	0.3623	0.0953	0.0412	0.7474	0.4568	0.5966	0.3613	0.6084	0.3658
	- LLMInit	0.6415	0.3997	<u>0.1760</u>	0.0789	0.7785	0.4941	0.6403	0.4010	0.6462	0.3948
	- LLM-ESR	0.6673*	0.4208*	0.1893*	0.0845*	0.8080*	0.5199*	0.6685*	0.4229*	0.6627*	0.4128*

- LLM-ESR achieves the best on tail and popular item group.
- LLM-ESR can augment the tail user group better.

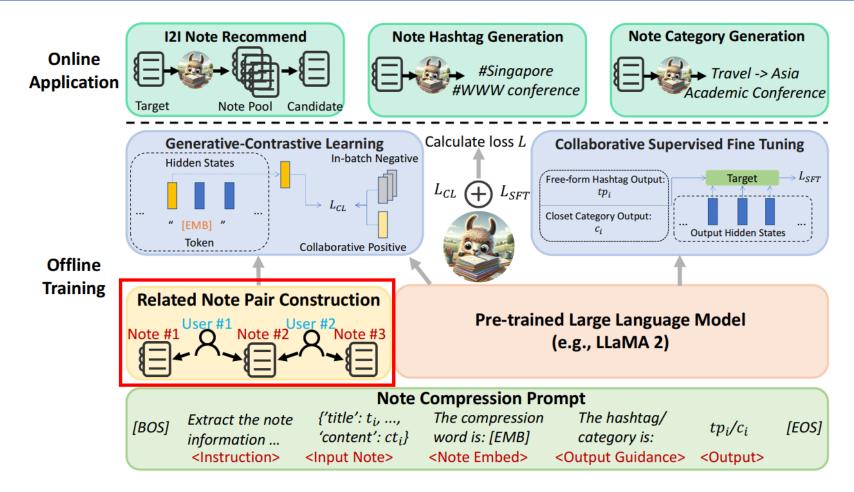
NoteLLM



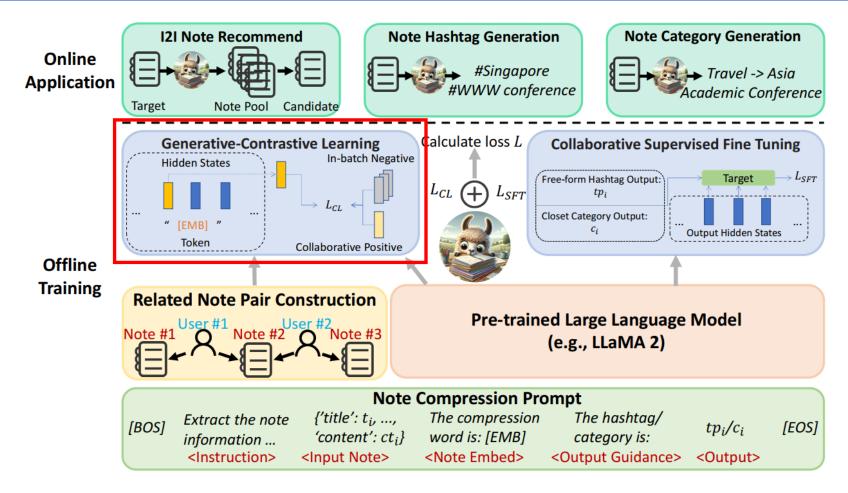
Zhang, Chao, et al. "NoteLLM: A Retrievable Large Language Model for Note Recommendation." WWW 2024.



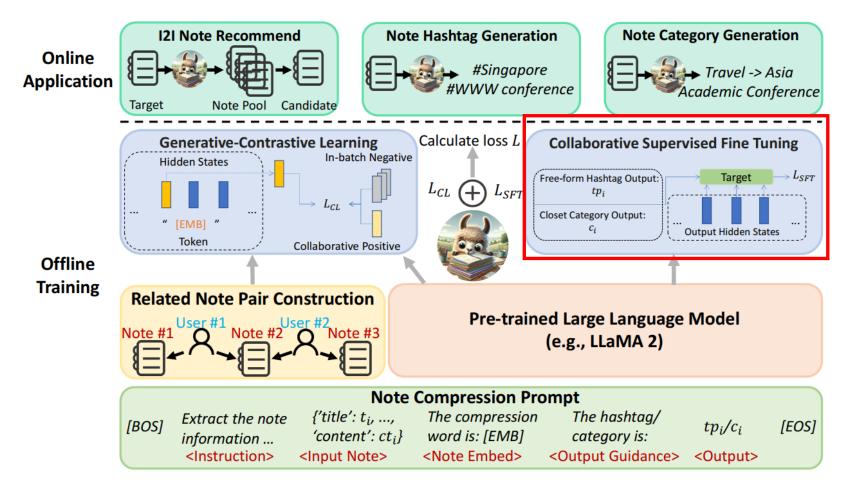
- Note Compression Prompt
 - Compressing the note content
 - Generating hashtags/categories



- Constructing related note pairs
 - Counting co-occurrence scores
 - Selecting notes with highest scores as related notes



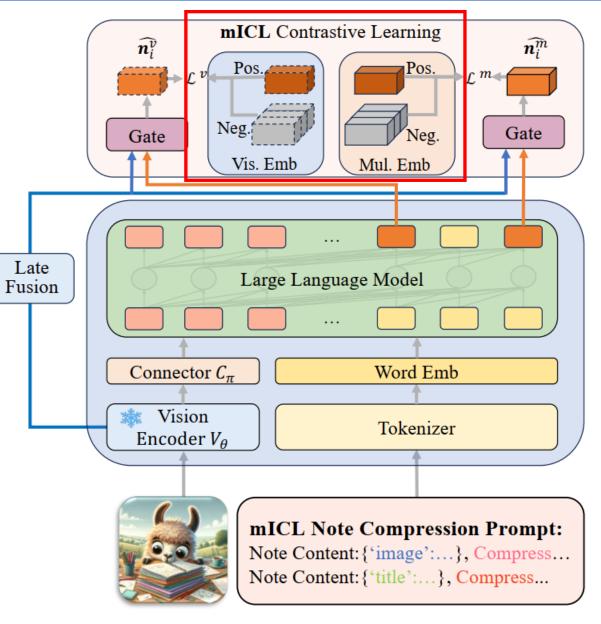
- Generative-Contrastive Learning
 - Identifying related notes from in-batch negatives



- Collaborative Supervised Fine-tuning
 - Generating hashtags/categories for each note

• Multimodal In-Context Learning

- Separating multimodal content into visual & textual components
- Compressing into modalitycompressed words

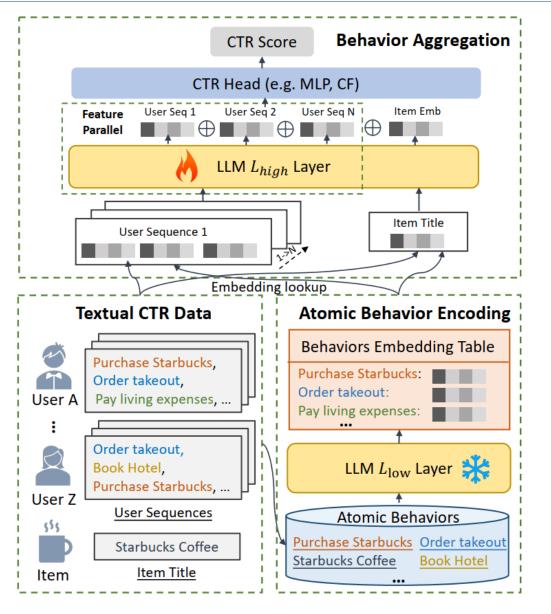


mICL Contrastive Learning $\widehat{\boldsymbol{n}_{i}^{v}}$ $\widehat{\boldsymbol{n}_{i}^{m}}$ • Late Fusion Pos. Pos. $\int m_{\sim}$ Multimodal Gating mechanism Neg. Gate Gate Neg. Vis. Emb Mul. Emb Late Large Language Model Fusion Word Emb Connector C_{π} Vision Tokenizer Encoder V_{θ} mICL Note Compression Prompt: Note Content: {'image':...}, Compress... Note Content: {'title':...}, Compress...

BAHE

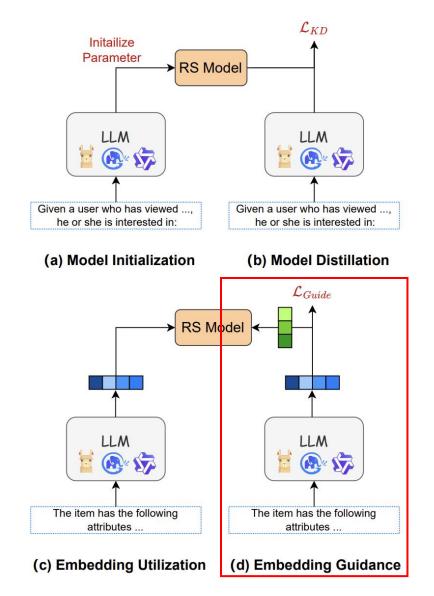
Hierarchical Encoding

- Lower layers encoding item into atomic representation
- Higer layers generating high-level user representations



Embedding Guidance

- This subcategory refers to only using the LLM embeddings as the guidance for training or parameter synthesis.
- Categories
 - User Only
 - User & Item



LLM4MSR

August 3-7, 2025 KDD2+25 CityU

Multi-Scenario Modeling

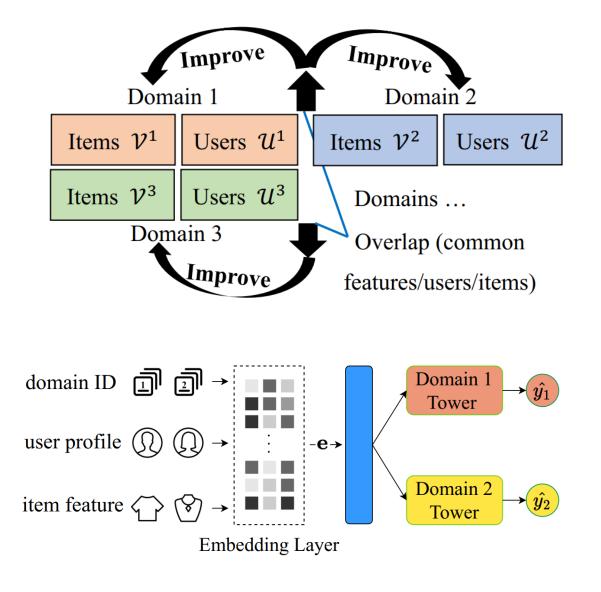
- Tackling data sparsity
- Reducing computation cost
- High efficiency

Challenges

- Insufficient scenario knowledge
- Ignoring cross-scenario preferences

Motivation

- Incorporating LLM to improve conventional recommender system
- LLM as reasoner + encoder



Scenario Correlation

form 1. hidden states-

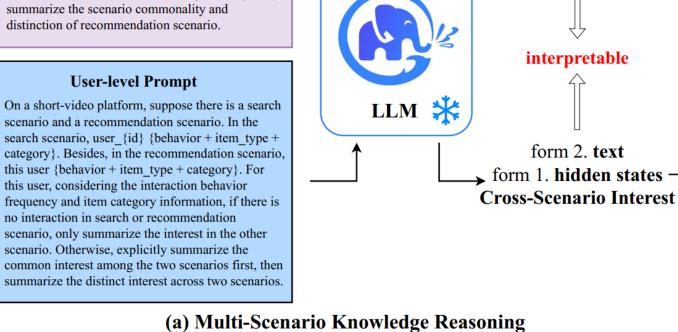
form 2. text

• Multi-scenario reasoning

- Scenario-level prompt
- User-level prompt

Scenario-level Prompt

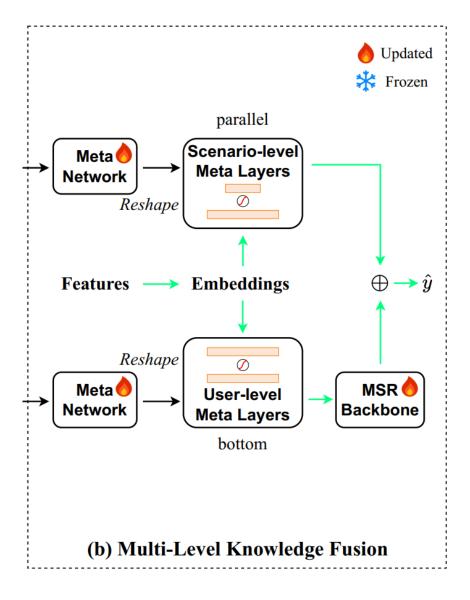
On the Kuaishou app, which is a short-video platform, suppose there is a search scenario with 3038362 interactions and a recommendation scenario with 7493101 interactions. In these two scenarios there are 25877 users and 4157218 items containing normal videos, advertisement, and unknown videos , where 97981 items are overlapped. From the relationship between search and recommendation and statistics given, explicitly summarize the scenario commonality and distinction of recommendation scenario.



LLM4MSR

Multi-level Fusion

- Meta-networks generating meta layers
- Hierarchical bottom + parallel structure



LLM4MSR

- LLM4MSR achieves an increase of 1.5%, 1%, and 40% in AUC on three datasets
 - Domain correlation & Personalized interest + Adaptive meta network

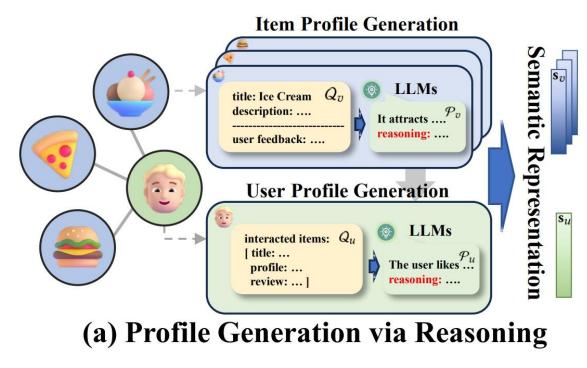
Backbones	KuaiSAR-small		KuaiSAR		Amazon		
	Rec	Search	Rec	Search	Rec#1	Rec#2	Rec#3
STAR	0.7225	0.6089	0.7387	0.6268	0.6156	0.6320	0.6225
STAR_DN	0.7241	0.6116	0.7404	0.6270	0.6306	0.6350	0.6355
STAR_EP	0.7230	0.6082	0.7388	0.6266	0.6211	0.6302	0.6378
STAR_ours	0.7276*	0.6181*	0.7408*	0.6332*	0.8720*	0.6364*	0.7543*
OMoE	0.7241	0.6163	0.7394	0.6310	0.5995	0.6043	0.6252
OMoE_DN	0.7249	0.6183	0.7402	0.6319	0.6027	0.6171	0.6289
OMoE_EP	0.7246	0.6179	0.7392	0.6330	0.6143	0.6176	0.6312
OMoE_ours	0.7265*	0.6186*	0.7413*	0.6332*	0.8182*	0.6180*	0.6823*
MMoE	0.7235	0.6150	0.7392	0.6313	0.5907	0.5999	0.6032
MMoE_DN	0.7246	0.6164	0.7394	0.6330	0.6310	0.6201	0.6371
MMoE_EP	0.7245	0.6178	0.7397	0.6326	0.6218	0.6221	0.6315
MMoE_ours	0.7264*	<u>0.6166</u> *	0.7410*	0.6341*	0.7860*	0.6222*	0.6854*
PLE	0.7249	0.6149	0.7396	0.6313	0.6059	0.6127	0.5995
PLE_DN	0.7258	0.6165	0.7400	0.6333	0.6066	0.6195	0.6162
PLE_EP	0.7252	0.6184	0.7402	0.6339	0.6173	0.6229	0.6263
PLE_ours	0.7269*	0.6184*	0.7408 *	0.6343*	0.8265*	0.6250*	0.7074*
AITM	0.7236	0.6154	0.7398	0.6329	0.6039	0.6126	0.6046
AITM_DN	0.7243	0.6172	0.7398	0.6318	0.6057	0.6151	0.6166
AITM_EP	0.7237	0.6177	0.7389	0.6337	0.6064	0.6163	0.6238
AITM_ours	0.7273*	0.6178*	0.7407*	0.6349*	0.8196*	0.6178*	0.7089*
Shared Bottom	0.7228	0.6169	0.7389	0.6321	0.6073	0.6077	0.6268
Shared Bottom_DN	0.7250	0.6176	0.7396	0.6323	0.6081	0.6253	0.6294
Shared Bottom_EP	0.7243	0.6182	0.7392	0.6331	0.6268	0.6174	0.6233
Shared Bottom_ours	0.7269*	0.6182*	0.7400*	0.6341*	0.8323*	0.6262*	0.7182*

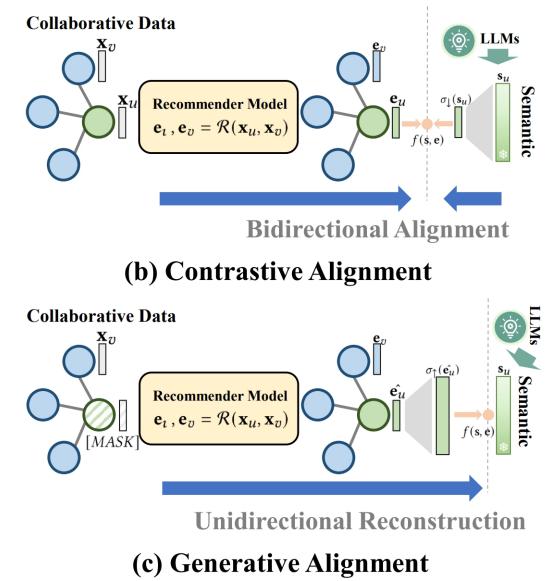
• LLM4MSR enhances various MSR backbone models, showing great compatibility and deployability

Backbones	KuaiSAR-small		KuaiSAR		Amazon		
	Rec	Search	Rec	Search	Rec#1	Rec#2	Rec#3
STAR	0.7225	0.6089	0.7387	0.6268	0.6156	0.6320	0.6225
STAR_DN	0.7241	0.6116	0.7404	0.6270	0.6306	0.6350	0.6355
STAR_EP	0.7230	0.6082	0.7388	0.6266	0.6211	0.6302	0.6378
STAR_ours	0.7276*	0.6181*	0.7408*	0.6332*	0.8720*	0.6364*	0.7543*
OMoE	0.7241	0.6163	0.7394	0.6310	0.5995	0.6043	0.6252
OMoE_DN	0.7249	0.6183	0.7402	0.6319	0.6027	0.6171	0.6289
OMoE_EP	0.7246	0.6179	0.7392	0.6330	0.6143	0.6176	0.6312
OMoE_ours	0.7265*	0.6186*	0.7413*	0.6332*	0.8182*	0.6180*	0.6823*
MMoE	0.7235	0.6150	0.7392	0.6313	0.5907	0.5999	0.6032
MMoE_DN	0.7246	0.6164	0.7394	0.6330	0.6310	0.6201	0.6371
MMoE_EP	0.7245	0.6178	0.7397	0.6326	0.6218	0.6221	0.6315
MMoE ours	0.7264*	0.6166*	0.7410*	0.6341*	0.7860*	0.6222*	0.6854*
PLE	0.7249	0.6149	0.7396	0.6313	0.6059	0.6127	0.5995
PLE_DN	0.7258	0.6165	0.7400	0.6333	0.6066	0.6195	0.6162
PLE_EP	0.7252	0.6184	0.7402	0.6339	0.6173	0.6229	0.6263
PLE_ours	0.7269*	0.6184*	0.7408*	0.6343*	0.8265*	0.6250*	0 .7074*
AITM	0.7236	0.6154	0.7398	0.6329	0.6039	0.6126	0.6046
AITM_DN	0.7243	0.6172	0.7398	0.6318	0.6057	0.6151	0.6166
AITM_EP	0.7237	0.6177	0.7389	0.6337	0.6064	0.6163	0.6238
AITM ours	0.7273*	0.6178*	0.7407*	0.6349*	0.8196*	0.6178*	0.7089*
Shared Bottom	0.7228	0.6169	0.7389	0.6321	0.6073	0.6077	0.6268
Shared Bottom_DN	0.7250	0.6176	0.7396	0.6323	0.6081	0.6253	0.6294
Shared Bottom_DN _Shared Bottom_EP	$\frac{0.7250}{0.7243}$	0.6176 0.6182	$\frac{0.7396}{0.7392}$	0.6323 <u>0.6331</u>	0.6081 0.6268	$\frac{0.6253}{0.6174}$	$\frac{0.6294}{0.6233}$

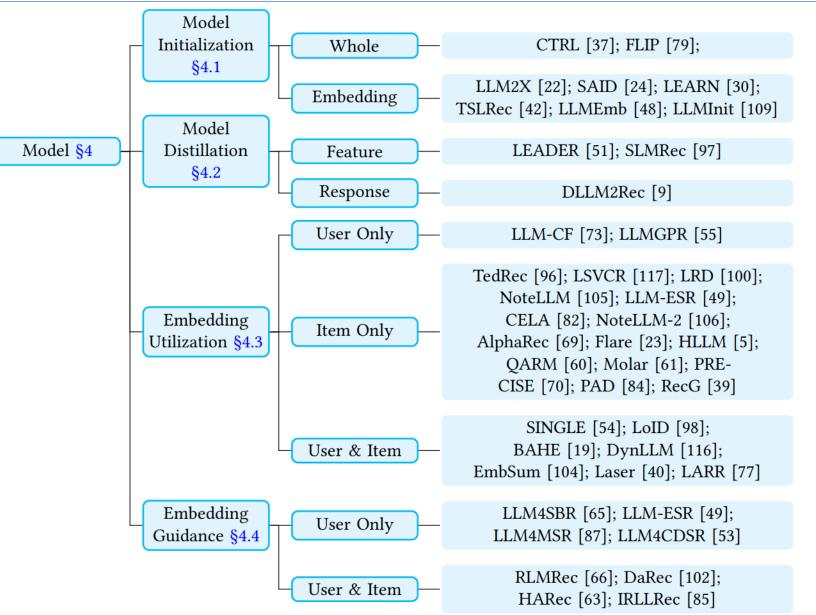
RLMRec

- Generating profile
- Extra alignment loss

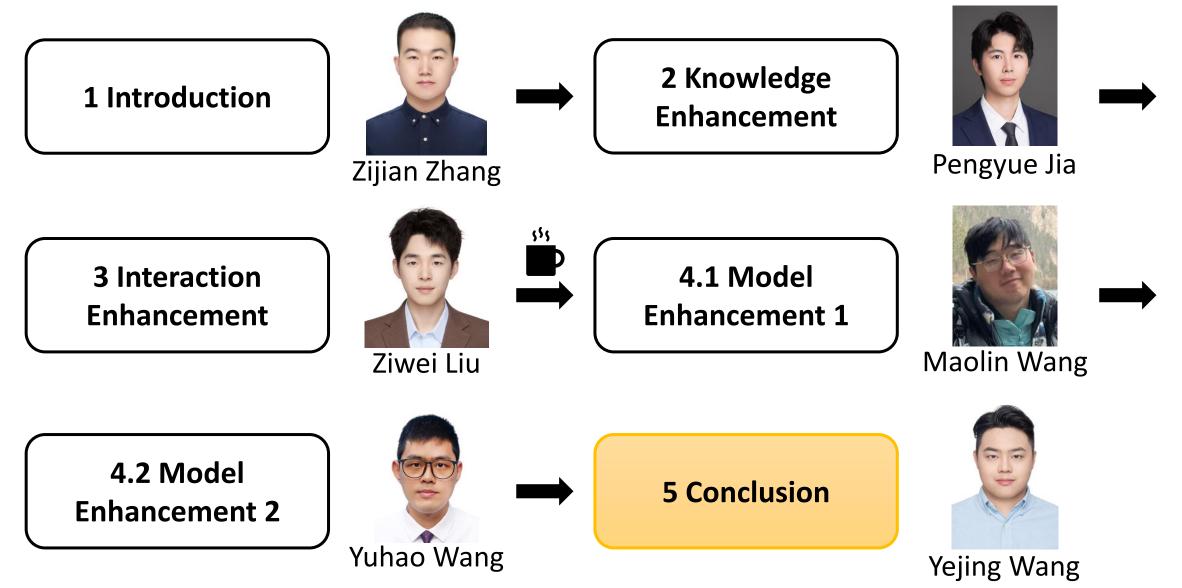




Summary



Agenda

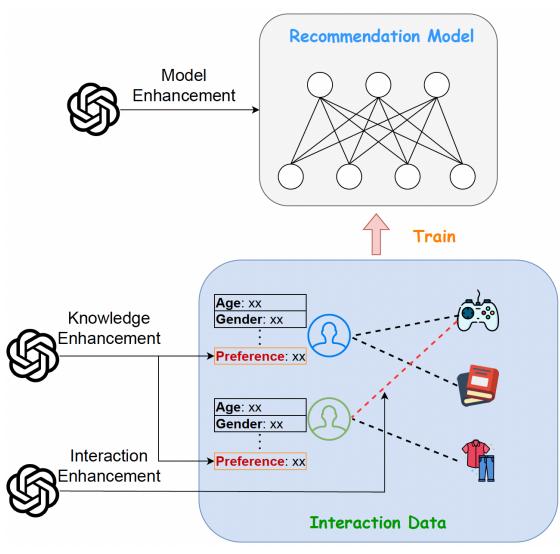


Conclusion

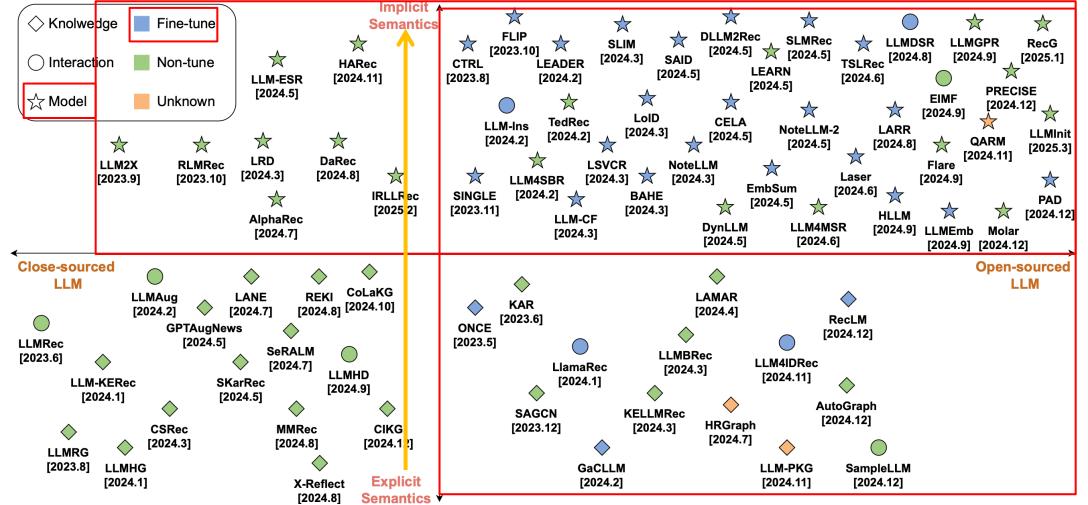
August 3-7, 2025

LLM-enhanced RS (LLMERS)

- Knowledge enhancement
 - World Knowledge, Reasoning
 - Explicit semantic -> requiring further encoding
- Interaction enhancement
 - Generation
 - Highly scalable
- Model enhancement
 - Representation, implicit semantic
 - (Small) pre-encoding & storage issues



Trend

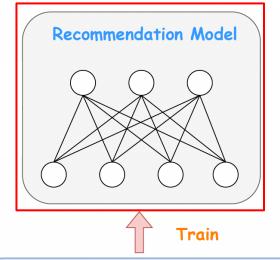


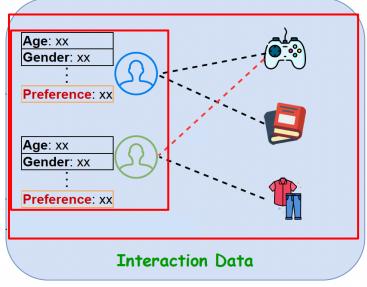
• Semantics: explicit -> implicit, model enhancement solutions are dominant

• Fine-tuned open-source LLMs are more popular for better adaptability

Future Directions

- Extended to more recommendation tasks
 - Focused on collaborative filtering and sequential recommendation
 - Potential in other tasks like multi-task, cross-domain...
- Support for multimodal/text-free RS
 - Multimodal input: MLLM -> adaptive representation
 - E.g., phone case vs. dresses on E-commerce platforms
 - Text-free RS: tabular data comprehension
- User-centric enhancement
 - Relying on item description/representations -> lengthy prompt/behavior-unaware integration
 - Item-free user enhancement, behavior-aware integration





- Scalability
 - More efficient than "LLM as RS" solutions
 - Huge computational & storage burden for extremely numerous items, especially knowledge & model enhancement -> Limited ROI
- Explainability
 - Not addressed by LLM
 - Generating explanations while enhancing RS
- Evaluations
 - Only evaluated combined with traditional RS
 - Lack of benchmarks and metrics for LLM enhancement

